期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The future of artificial hibernation medicine:protection of nerves and organs after spinal cord injury 被引量:1
1
作者 Caiyun Liu Haixin Yu +4 位作者 Zhengchao Li Shulian chen Xiaoyin Li xuyi chen Bo chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期22-28,共7页
Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hi... Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hibernation techniques,mild hypothermia has preliminarily confirmed its clinical effect on spinal cord injury.However,its technical defects and barriers,along with serious clinical side effects,restrict its clinical application for spinal cord injury.Artificial hibernation is a futureoriented disruptive technology for human life support.It involves endogenous hibernation inducers and hibernation-related central neuromodulation that activate particular neurons,reduce the central constant temperature setting point,disrupt the normal constant body temperature,make the body adapt"to the external cold environment,and reduce the physiological resistance to cold stimulation.Thus,studying the artificial hibernation mechanism may help develop new treatment strategies more suitable for clinical use than the cooling method of mild hypothermia technology.This review introduces artificial hibernation technologies,including mild hypothermia technology,hibernation inducers,and hibernation-related central neuromodulation technology.It summarizes the relevant research on hypothermia and hibernation for organ and nerve protection.These studies show that artificial hibernation technologies have therapeutic significance on nerve injury after spinal co rd injury through inflammatory inhibition,immunosuppression,oxidative defense,and possible central protection.It also promotes the repair and protection of res pirato ry and digestive,cardiovascular,locomoto r,urinary,and endocrine systems.This review provides new insights for the clinical treatment of nerve and multiple organ protection after spinal cord injury thanks to artificial hibernation.At present,artificial hibernation technology is not mature,and research fa ces various challenges.Neve rtheless,the effort is wo rthwhile for the future development of medicine. 展开更多
关键词 artificial hibernation central thermostatic-resista nt regulation hypothermia multi-system protection neuroprotection organ protection spinal cord injury synthetic torpor
下载PDF
Application of artificial hibernation technology in acute brain injury 被引量:1
2
作者 Xiaoni Wang Shulian chen +5 位作者 Xiaoyu Wang Zhen Song Ziqi Wang Xiaofei Niu Xiaochu chen xuyi chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1940-1946,共7页
Controlling intracranial pressure,nerve cell regeneration,and microenvironment regulation are the key issues in reducing mortality and disability in acute brain injury.There is currently a lack of effective treatment ... Controlling intracranial pressure,nerve cell regeneration,and microenvironment regulation are the key issues in reducing mortality and disability in acute brain injury.There is currently a lack of effective treatment methods.Hibernation has the characteristics of low temperature,low metabolism,and hibernation rhythm,as well as protective effects on the nervous,cardiovascular,and motor systems.Artificial hibernation technology is a new technology that can effectively treat acute brain injury by altering the body’s metabolism,lowering the body’s core temperature,and allowing the body to enter a state similar to hibernation.This review introduces artificial hibernation technology,including mild hypothermia treatment technology,central nervous system regulation technology,and artificial hibernation-inducer technology.Upon summarizing the relevant research on artificial hibernation technology in acute brain injury,the research results show that artificial hibernation technology has neuroprotective,anti-inflammatory,and oxidative stress-resistance effects,indicating that it has therapeutic significance in acute brain injury.Furthermore,artificial hibernation technology can alleviate the damage of ischemic stroke,traumatic brain injury,cerebral hemorrhage,cerebral infarction,and other diseases,providing new strategies for treating acute brain injury.However,artificial hibernation technology is currently in its infancy and has some complications,such as electrolyte imbalance and coagulation disorders,which limit its use.Further research is needed for its clinical application. 展开更多
关键词 cute brain injury artificial hibernation HYPOTHERMIA low metabolism mild hypothermia
下载PDF
C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 pathway as a therapeutic target and regulatory mechanism for spinal cord injury
3
作者 Xiangzi Wang Xiaofei Niu +4 位作者 Yingkai Wang Yang Liu cheng Yang xuyi chen Zhongquan Qi 《Neural Regeneration Research》 SCIE CAS 2025年第8期2231-2244,共14页
Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand... Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis exhibits significant differences before and after injury.Recent studies have revealed that the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis is closely associated with secondary inflammatory responses and the recruitment of immune cells following spinal cord injury,suggesting that this axis is a novel target and regulatory control point for treatment.This review comprehensively examines the therapeutic strategies targeting the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis,along with the regenerative and repair mechanisms linking the axis to spinal cord injury.Additionally,we summarize the upstream and downstream inflammatory signaling pathways associated with spinal cord injury and the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review primarily elaborates on therapeutic strategies that target the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the latest progress of research on antagonistic drugs,along with the approaches used to exploit new therapeutic targets within the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the development of targeted drugs.Nevertheless,there are presently no clinical studies relating to spinal cord injury that are focusing on the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review aims to provide new ideas and therapeutic strategies for the future treatment of spinal cord injury. 展开更多
关键词 apoptosis C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 pathway C-C motif chemokine receptor 2 antagonists chemokine ligand 2 chemokine receptor 2 inflammation macrophage microglia spinal cord injury therapeutic method
下载PDF
Three-dimensional-printed collagen/chitosan/secretome derived from HUCMSCs scaffolds for efficient neural network reconstruction in canines with traumatic brain injury 被引量:2
4
作者 Xiaoyin Liu Guijun Zhang +5 位作者 Pan Wei Lin Zhong Yaxing chen Jianyong Zhang xuyi chen Liangxue Zhou 《Regenerative Biomaterials》 SCIE EI 2022年第1期572-584,共13页
The secretome secreted by stem cells and bioactive material has emerged as a promising therapeutic choice for traumatic brain injury(TBI).We aimed to determine the effect of 3D-printed collagen/chitosan/secretome deri... The secretome secreted by stem cells and bioactive material has emerged as a promising therapeutic choice for traumatic brain injury(TBI).We aimed to determine the effect of 3D-printed collagen/chitosan/secretome derived from human umbilical cord blood mesenchymal stem cells scaffolds(3D-CC-ST)on the injured tissue regeneration process.3D-CC-ST was performed using 3D printing technology at a low temperature(20C),and the physical properties and degeneration rate were measured.The utilization of low temperature contributed to a higher cytocompatibility of fabricating porous 3D architectures that provide a homogeneous distribution of cells.Immediately after the establishment of the canine TBI model,3D-CC-ST and 3D-CC(3D-printed collagen/chitosan scaffolds)were implanted into the cavity of TBI.Following implantation of scaffolds,neurological examination and motor evoked potential detection were performed to analyze locomotor function recovery.Histological and immunofluorescence staining were performed to evaluate neuro-regeneration.The group treated with 3D-CC-ST had good performance of behavior functions.Implanting 3D-CC-ST significantly reduced the cavity area,facilitated the regeneration of nerve fibers and vessel reconstruction,and promoted endogenous neuronal differentiation and synapse formation after TBI.The implantation of 3D-CC-ST also markedly reduced cell apoptosis and regulated the level of systemic inflammatory factors after TBI. 展开更多
关键词 traumatic brain injury CANINES SECRETOME low temperature extrusion 3D printing COLLAGEN CHITOSAN
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部