Light fields with spatially structured states of polarization(SoPs) are gathering increasing attention because of their potential applications from optical imaging and micromanipulation to classical and quantum comm...Light fields with spatially structured states of polarization(SoPs) are gathering increasing attention because of their potential applications from optical imaging and micromanipulation to classical and quantum communications. Meanwhile,the concepts within structured light fields have been extended and applied to acoustic, electron, and matter waves. In this article, we review recent developments of the SoP modulation of light fields, especially focusing on three-dimensional(3 D) modulations on the SoPs of light fields. The recent progress and novel implementations based on 3 D spin-dependent separation are discussed. Following the discussions to this physical phenomenon, we then describe recent developments on the vector fields with 3 D structured SoP and intensity distributions, namely, 3 D vector fields. The discussed phenomena inspire us to explore other structured light fields for the expansion of applications in biomedical, information science,quantum optics, and so on.展开更多
Recently,physical fields with topological configurations are evoking increasing attention due to their fascinating structures both in fundamental researches and practical applications.Therein,topological light fields,...Recently,physical fields with topological configurations are evoking increasing attention due to their fascinating structures both in fundamental researches and practical applications.Therein,topological light fields,because of their unique opportunity of combining experimental and analytical studies,are attracting more interest.Here,based on the Pancharatnam-Berry(PB)phase,we report the creation of Hopf linked and Trefoil knotted optical vortices by using phaseonly encoded liquid crystal(LC)holographic plates.Utilizing scanning measurement and the digital holographic interference method,we accurately locate the vortex singularities and map these topological nodal lines in three-dimensions.Compared with the common methods realized by the spatial light modulator(SLM),the phase-only LC plate is more efficient.Meanwhile,the smaller pixel size of the LC element reduces the imperfection induced by optical misalignment and pixellation.Moreover,we analyze the influence of the incident beam size on the topological configuration.展开更多
Spatially structured light field has attracted great attention due to its novel properties and application potential in numerous fields.Among them,the most striking one is the polarization-structured light,known as th...Spatially structured light field has attracted great attention due to its novel properties and application potential in numerous fields.Among them,the most striking one is the polarization-structured light,known as the vector beam.Here,using a periodic polarization-structured light,we propose a method to dynamically measure the holo-information of light fields,including the amplitude,phase,and polarization distributions,in three-dimensional(3D)space.The measurement system is composed of a Mach-Zender interferometer involving a liquid crystal polarized grating in the reference arm,which is simple,stable,and easy to operate.Featuring the single-shot measurement,this method supports observing the dynamic variation of object light fields.The accuracy,3D polarimetry,and dynamic observation of this method are validated by measuring a calibrated quarter-wave plate,a vector vortex beam,a Poincarébeam,and a stressed polymethyl methacrylate sample.展开更多
Optical vortices carrying orbital angular momentum(OAM)have attracted extensive attention in recent decades because of their interesting applications in optical trapping,optical machining,optical communication,quantum...Optical vortices carrying orbital angular momentum(OAM)have attracted extensive attention in recent decades because of their interesting applications in optical trapping,optical machining,optical communication,quantum information,and optical microscopy.Intriguing effects induced by OAMs,such as angular momentum conversion,spin Hall effect of light(SHEL),and spin– orbital interaction,have also gained increasing interest.In this article,we provide an overview of the modulations of OAMs on the propagation dynamics of scalar and vector fields in free space.First,we introduce the evolution of canonical and noncanonical optical vortices and analyze the modulations by means of local spatial frequency.Second,we review the Pancharatnam–Berry(PB)phases arising from spin–orbital interaction and reveal the control of beam evolution referring to novel behavior such as spindependent splitting and polarization singularity conversion.Finally,we discuss the propagation and focusing properties of azimuthally broken vector vortex beams.展开更多
In recent years,metasurfaces that enable the flexible wavefront modulation at sub-wavelength scale have been widely used into holographic display,due to its prominent advantages in polarization degrees of freedom,view...In recent years,metasurfaces that enable the flexible wavefront modulation at sub-wavelength scale have been widely used into holographic display,due to its prominent advantages in polarization degrees of freedom,viewing angle,and achromaticity in comparison with traditional holographic devices.In holography,the computational complexity of hologram,imaging sharpness,energy utilization,reproduction rate,and system indirection are all determined by the encoding method.Here,we propose a visible frequency broadband dielectric metahologram based on the random Fourier phase-only encoding method.Using this simple and convenient method,we design and fabricate a transmission-type geometric phase all-dielectric metahologram,which can realize holographic display with high quality in the visible frequency range.This method encodes the amplitude information into the phase function only once,eliminating the cumbersome iterations,which greatly simplifies the calculation process,and may facilitate the preparation of large area nanoprint-holograms.展开更多
Spin splitting of light originates from the interplay between the polarization and spatial degrees of freedom as a fundamental constituent of the emerging spin photonics,providing a prominent pathway for manipulating ...Spin splitting of light originates from the interplay between the polarization and spatial degrees of freedom as a fundamental constituent of the emerging spin photonics,providing a prominent pathway for manipulating photon spin and developing exceptional photonic devices.However,previously relevant devices were mainly designed for routing monotonous spin splitting of light.Here,we realize an oscillatory spin splitting of light via metasurface with two channel Pancharatnam–Berry phases.For the incidence of a linearly polarized light,the concomitant phases arising from opposite spin states transition within pathways of the metasurface induce lateral spin splitting of light with alternately changed transport direction during beam guiding.We demonstrate the invariance of this phenomenon with an analogous gauge transformation.This work provides a new insight on steering the photon spin and is expected to explore a novel guiding mechanism of relativistic spinning particles,as well as applications of optical trapping and chirality sorting.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11634010,11774289,61675168,and 61377035)the National Key Research and Development Program of China(Grant No.2017YFA0303800)+1 种基金Joint Fund of the National Natural Science Foundation Committee of China Academy of Engineering Physics(Grant No.U1630125)the Fundamental Research Funds for the Central Universities,China(Grant No.3102018zy036)
文摘Light fields with spatially structured states of polarization(SoPs) are gathering increasing attention because of their potential applications from optical imaging and micromanipulation to classical and quantum communications. Meanwhile,the concepts within structured light fields have been extended and applied to acoustic, electron, and matter waves. In this article, we review recent developments of the SoP modulation of light fields, especially focusing on three-dimensional(3 D) modulations on the SoPs of light fields. The recent progress and novel implementations based on 3 D spin-dependent separation are discussed. Following the discussions to this physical phenomenon, we then describe recent developments on the vector fields with 3 D structured SoP and intensity distributions, namely, 3 D vector fields. The discussed phenomena inspire us to explore other structured light fields for the expansion of applications in biomedical, information science,quantum optics, and so on.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11634010,91850118,11774289,61675168,and 11804277)the National Key Research and Development Program of China(Grant No.2017YFA0303800)+1 种基金the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics(Grant No.U1630125)the Fundamental Research Funds for the Central Universities,China(Grant Nos.3102018zy036,3102019JC008,and 310201911cx022)。
文摘Recently,physical fields with topological configurations are evoking increasing attention due to their fascinating structures both in fundamental researches and practical applications.Therein,topological light fields,because of their unique opportunity of combining experimental and analytical studies,are attracting more interest.Here,based on the Pancharatnam-Berry(PB)phase,we report the creation of Hopf linked and Trefoil knotted optical vortices by using phaseonly encoded liquid crystal(LC)holographic plates.Utilizing scanning measurement and the digital holographic interference method,we accurately locate the vortex singularities and map these topological nodal lines in three-dimensions.Compared with the common methods realized by the spatial light modulator(SLM),the phase-only LC plate is more efficient.Meanwhile,the smaller pixel size of the LC element reduces the imperfection induced by optical misalignment and pixellation.Moreover,we analyze the influence of the incident beam size on the topological configuration.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFA0303800)the National Natural Science Foundation of China(Grant Nos.11634010,12074312,61675168,11774289,91850118,12074313,and 11804277)+2 种基金the Basic Research Plan of Natural Science in Shaanxi Province(Grant No.2019JM-583)the Fundamental Research Funds for the Central Universities(Grant No.3102019JC008)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(Grant No.CX202047)。
文摘Spatially structured light field has attracted great attention due to its novel properties and application potential in numerous fields.Among them,the most striking one is the polarization-structured light,known as the vector beam.Here,using a periodic polarization-structured light,we propose a method to dynamically measure the holo-information of light fields,including the amplitude,phase,and polarization distributions,in three-dimensional(3D)space.The measurement system is composed of a Mach-Zender interferometer involving a liquid crystal polarized grating in the reference arm,which is simple,stable,and easy to operate.Featuring the single-shot measurement,this method supports observing the dynamic variation of object light fields.The accuracy,3D polarimetry,and dynamic observation of this method are validated by measuring a calibrated quarter-wave plate,a vector vortex beam,a Poincarébeam,and a stressed polymethyl methacrylate sample.
基金the National Natural Science Foundation of China(NSFC)(Grant Nos.11634010,11404262,61675168,U1630125 and 61377035)Fundamental Research Funds for the Central Universities(No.3102015ZY057)Innovation Foundation for Doctor Dissertation of North-western Polytechnical University(No.CX201629).
文摘Optical vortices carrying orbital angular momentum(OAM)have attracted extensive attention in recent decades because of their interesting applications in optical trapping,optical machining,optical communication,quantum information,and optical microscopy.Intriguing effects induced by OAMs,such as angular momentum conversion,spin Hall effect of light(SHEL),and spin– orbital interaction,have also gained increasing interest.In this article,we provide an overview of the modulations of OAMs on the propagation dynamics of scalar and vector fields in free space.First,we introduce the evolution of canonical and noncanonical optical vortices and analyze the modulations by means of local spatial frequency.Second,we review the Pancharatnam–Berry(PB)phases arising from spin–orbital interaction and reveal the control of beam evolution referring to novel behavior such as spindependent splitting and polarization singularity conversion.Finally,we discuss the propagation and focusing properties of azimuthally broken vector vortex beams.
基金supported by the National Natural Science Foundation of China(Grant Nos.11634010,91850118,11774289,61675168,and 11804277)the National Key Research and Development Program of China(Grant No.2017YFA0303800)the Fundamental Research Funds for the Central Universities(Grant Nos.3102018zy036,3102019JC008,and 310201911cx022)。
文摘In recent years,metasurfaces that enable the flexible wavefront modulation at sub-wavelength scale have been widely used into holographic display,due to its prominent advantages in polarization degrees of freedom,viewing angle,and achromaticity in comparison with traditional holographic devices.In holography,the computational complexity of hologram,imaging sharpness,energy utilization,reproduction rate,and system indirection are all determined by the encoding method.Here,we propose a visible frequency broadband dielectric metahologram based on the random Fourier phase-only encoding method.Using this simple and convenient method,we design and fabricate a transmission-type geometric phase all-dielectric metahologram,which can realize holographic display with high quality in the visible frequency range.This method encodes the amplitude information into the phase function only once,eliminating the cumbersome iterations,which greatly simplifies the calculation process,and may facilitate the preparation of large area nanoprint-holograms.
基金National Natural Science Foundation of China(12174309,11634010,91850118,11774289)National Key Research and Development Program of China(2017YFA0303800)+1 种基金Natural Science Basic Research Program of Shaanxi(2021JQ-895,2020JM-104)Fundamental Research Funds for the Central Universities(3102019JC008)。
文摘Spin splitting of light originates from the interplay between the polarization and spatial degrees of freedom as a fundamental constituent of the emerging spin photonics,providing a prominent pathway for manipulating photon spin and developing exceptional photonic devices.However,previously relevant devices were mainly designed for routing monotonous spin splitting of light.Here,we realize an oscillatory spin splitting of light via metasurface with two channel Pancharatnam–Berry phases.For the incidence of a linearly polarized light,the concomitant phases arising from opposite spin states transition within pathways of the metasurface induce lateral spin splitting of light with alternately changed transport direction during beam guiding.We demonstrate the invariance of this phenomenon with an analogous gauge transformation.This work provides a new insight on steering the photon spin and is expected to explore a novel guiding mechanism of relativistic spinning particles,as well as applications of optical trapping and chirality sorting.