Background: This manuscript aimed to map the spatial distributions of health clinics for public and private sectors in Malaysia. It would assist the stakeholders and responsible authorities in the planning for health ...Background: This manuscript aimed to map the spatial distributions of health clinics for public and private sectors in Malaysia. It would assist the stakeholders and responsible authorities in the planning for health service delivery. Methods: Data related to health clinic were gathered from stakeholders. The location of health facilities was geo-coded using a Global Positioning System (GPS) handheld. The average nearest neighbour was used to identify whether health clinics were spatially clustered or dispersed. Hot spot analysis was used to assess high density of health clinics to population ratio and average distance of health clinics distribution. A Geographically Weighted Regression (GWR) was used to analyse the requirement of health clinic in a sub-district based on population density and number of health clinics with significant level展开更多
文摘Background: This manuscript aimed to map the spatial distributions of health clinics for public and private sectors in Malaysia. It would assist the stakeholders and responsible authorities in the planning for health service delivery. Methods: Data related to health clinic were gathered from stakeholders. The location of health facilities was geo-coded using a Global Positioning System (GPS) handheld. The average nearest neighbour was used to identify whether health clinics were spatially clustered or dispersed. Hot spot analysis was used to assess high density of health clinics to population ratio and average distance of health clinics distribution. A Geographically Weighted Regression (GWR) was used to analyse the requirement of health clinic in a sub-district based on population density and number of health clinics with significant level