期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Healing Process of Casting Pores in a Ni-based Superalloy by Hot Isostatic Pressing 被引量:7
1
作者 X.G.Zheng y.-n.shi L.H.Lou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第11期1151-1157,共7页
Hot isostatic pressing (HIP) with a pressure of 180 MPa at a temperature of 1170 ℃ was introduced to an investment cast Ni-based superalloy (Mgl) turbocharger blade to explore the healing process of casting pores... Hot isostatic pressing (HIP) with a pressure of 180 MPa at a temperature of 1170 ℃ was introduced to an investment cast Ni-based superalloy (Mgl) turbocharger blade to explore the healing process of casting pores generated during investment casting. Optical micrograph and scanning electron naicroscopy (SEM) observations indicate that eutectic pores are the main cast defects in the as-cast blade before HIP. These pores normally locate at the solidification front of γ/γ' eutectic with a size of a few micrometers to a few tens of micrometers. After HIP for 4 h, most of the pores were closed. Based on phase characteristics, these pores were healed by the formation of γ matrix with finer and irregular-shaped γ' precipitates. Healing interface can be easily distinguished by SEM. Line scan by using energy dispersive X-ray spectroscopy (EDS) reveals a much higher Ti and Al concentration in the healing interface. It is proposed that solute diffusion toward the casting pores during HIP results in the formation of γ, and the much higher concentration of γ'-forming elements Al and Ti near the healing interface contributes to the precipitation of γ' in the healed region in the succeeding cooling process after HIP. 展开更多
关键词 Superalloy Hot isostatic pressing (HIP) Healing
原文传递
Suppression of grain boundary migration at cryogenic temperature in an extremely fine nanograined Ni-Mo alloy 被引量:1
2
作者 J.Hu J.X.Li y.-n.shi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第22期65-69,共5页
Microindentation creep tests on an electrodeposited extremely fine(4.9 nm) nanograined(ng) Ni-14.2 at.% Mo(Ni-14.2 Mo) at both room temperature(RT) and liquid nitrogen temperature(LNT) demonstrated that lowering tempe... Microindentation creep tests on an electrodeposited extremely fine(4.9 nm) nanograined(ng) Ni-14.2 at.% Mo(Ni-14.2 Mo) at both room temperature(RT) and liquid nitrogen temperature(LNT) demonstrated that lowering temperature retarded softening in the ng Ni-Mo alloy. The obtained strain rate sensitivity at LNT was one order of magnitude lower than that at RT. Microstructural characterization revealed that mechanically-driven grain boundary(GB) migration was greatly suppressed by lowering temperature,which might be ascribed to the presence of solute Mo atoms that significantly retarded coupled GB motion at LNT. Deformation was instead carried by shear bands. 展开更多
关键词 Extremely fine nanograined metals Mechanically-driven grain boundary migration Cryogenic temperature Shear bands Solute atoms
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部