A graphene-coated microfiber(GCM)-based hybrid waveguide structure formed by wrapping monolayer graphene around a microfiber with length of several millimeters is pumped by a nanosecond laser at ~1550 nm, and multiord...A graphene-coated microfiber(GCM)-based hybrid waveguide structure formed by wrapping monolayer graphene around a microfiber with length of several millimeters is pumped by a nanosecond laser at ~1550 nm, and multiorder cascaded four-wave-mixing(FWM) is effectively generated. By optimizing both the detuning and the pump power, such a GCM device with high nonlinearity and compact size would have potential for a wide range of FWM applications, such as phase-sensitive amplification, multi-wavelength filter, all-optical regeneration and frequency conversion, and so on.展开更多
In this paper we describe the scanning electron microscopy techniques of electron backscatter diffraction, electron channeling contrast imaging, wavelength dispersive X-ray spectroscopy, and cathodoluminescence hypers...In this paper we describe the scanning electron microscopy techniques of electron backscatter diffraction, electron channeling contrast imaging, wavelength dispersive X-ray spectroscopy, and cathodoluminescence hyperspectral imaging. We present our recent results on the use of these non-destructive techniques to obtain information on the topography, crystal misorientation, defect distributions, composition, doping, and light emission from a range of UV-emitting nitride semiconductor structures. We aim to illustrate the developing capability of each of these techniques for understanding the properties of UV-emitting nitride semiconductors, and the benefits were appropriate, in combining the techniques.展开更多
基金supported by National Natural Science Foundation of China under Grants 61290312, 61107072, 61107073, and 61475032supported by Program for Changjiang Scholars and Innovative Research Team in Universities of China (PCSIRT)the “111 Project” of China Education Ministry
文摘A graphene-coated microfiber(GCM)-based hybrid waveguide structure formed by wrapping monolayer graphene around a microfiber with length of several millimeters is pumped by a nanosecond laser at ~1550 nm, and multiorder cascaded four-wave-mixing(FWM) is effectively generated. By optimizing both the detuning and the pump power, such a GCM device with high nonlinearity and compact size would have potential for a wide range of FWM applications, such as phase-sensitive amplification, multi-wavelength filter, all-optical regeneration and frequency conversion, and so on.
基金financial support of the Engineering and Physical Sciences Research Council, UK via Grant No. EP/J015792/1,“Nanoscale characterisation of nitride semiconductor thin films using EBSD, ECCI, CL and EBIC”Grant No. EP/M015181/ 1, “Manufacturing nano-engineered III-nitrides”+2 种基金Grant No. EP/P015719/1, “Quantitative non-destructive nanoscale characterisation of advanced materials”partially supported by the German “Federal Ministry of Education and Research” (BMBF) within the “Advanced UV for Life” consortiumthe “German Research Foundation” (DFG) within the “Collaborative Research Center 787”
文摘In this paper we describe the scanning electron microscopy techniques of electron backscatter diffraction, electron channeling contrast imaging, wavelength dispersive X-ray spectroscopy, and cathodoluminescence hyperspectral imaging. We present our recent results on the use of these non-destructive techniques to obtain information on the topography, crystal misorientation, defect distributions, composition, doping, and light emission from a range of UV-emitting nitride semiconductor structures. We aim to illustrate the developing capability of each of these techniques for understanding the properties of UV-emitting nitride semiconductors, and the benefits were appropriate, in combining the techniques.