The structural transformation in Fe-Cu powder induced by mechanically driven alloying has been monitored by the lattice constant measurements and Mossbauer spectroscopy. For the samples with Cu higher than 75at.% Moss...The structural transformation in Fe-Cu powder induced by mechanically driven alloying has been monitored by the lattice constant measurements and Mossbauer spectroscopy. For the samples with Cu higher than 75at.% Mossbauer the spectra show a broad paramagnetic doublet; for samples with 50 and 60at.%Cu a new broad ferromagnetic sextet; for those with less than 30at.%Cu similar to those of α-Fe. The main peaks of the hyperfine field distribution significantly broaden and shift to a lower position with increasing Cu content due to the complex environments of iron atoms in the solid solutions and the reduction in the nearest neighbor Fe of a cental Fe atom, respectively. The saturation magnetization of Fe-Cu alloys monotonously decreases with Cu content. The complex composition dependence of coercive field for the milled samples is discussed with respect to the solid dissolution, grain size, interfacial state etc.. The increase of lattice constants with the solute content in the two terminal solid solutions has been explained by the volume-size factor theory or magnetovolume effect.展开更多
文摘The structural transformation in Fe-Cu powder induced by mechanically driven alloying has been monitored by the lattice constant measurements and Mossbauer spectroscopy. For the samples with Cu higher than 75at.% Mossbauer the spectra show a broad paramagnetic doublet; for samples with 50 and 60at.%Cu a new broad ferromagnetic sextet; for those with less than 30at.%Cu similar to those of α-Fe. The main peaks of the hyperfine field distribution significantly broaden and shift to a lower position with increasing Cu content due to the complex environments of iron atoms in the solid solutions and the reduction in the nearest neighbor Fe of a cental Fe atom, respectively. The saturation magnetization of Fe-Cu alloys monotonously decreases with Cu content. The complex composition dependence of coercive field for the milled samples is discussed with respect to the solid dissolution, grain size, interfacial state etc.. The increase of lattice constants with the solute content in the two terminal solid solutions has been explained by the volume-size factor theory or magnetovolume effect.