This paper investigates the corrosion fatigue (CF) crack initiation behavior of 316L stainless steel in Hank's solution which simulates bodylike fluid. The CF experiments were conducted under the conditions of ele...This paper investigates the corrosion fatigue (CF) crack initiation behavior of 316L stainless steel in Hank's solution which simulates bodylike fluid. The CF experiments were conducted under the conditions of electrochemically accelerated, free immersion and pre-polarized pitting potential. The results showed that 316L stainless steel was susceptible to pitting corrosion in Hank's solution. Intergranular corrosion occurred obviously at the bottom of pits where the CF cracks initiated by the combined action of alternating stress and corrosive medium for the notch effect of stress concentrated in the grain boundaries.The CF crack propagation is both intergranular and transgranular.展开更多
文摘This paper investigates the corrosion fatigue (CF) crack initiation behavior of 316L stainless steel in Hank's solution which simulates bodylike fluid. The CF experiments were conducted under the conditions of electrochemically accelerated, free immersion and pre-polarized pitting potential. The results showed that 316L stainless steel was susceptible to pitting corrosion in Hank's solution. Intergranular corrosion occurred obviously at the bottom of pits where the CF cracks initiated by the combined action of alternating stress and corrosive medium for the notch effect of stress concentrated in the grain boundaries.The CF crack propagation is both intergranular and transgranular.