期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Characterising Mechanical Properties of Flowing Microcapsules Using a Deep Convolutional Neural Network
1
作者 T.Lin Z.Wang +2 位作者 R.X.Lu W.Wang y.sui 《Advances in Applied Mathematics and Mechanics》 SCIE 2022年第1期79-100,共22页
Deformable microcapsules are widely used in industries and also serve as a mechanical model of living biological cells.In this study,we develop a novel method,by integrating a deep convolutional neural network(DCNN)wi... Deformable microcapsules are widely used in industries and also serve as a mechanical model of living biological cells.In this study,we develop a novel method,by integrating a deep convolutional neural network(DCNN)with high-fidelity mechanistic capsule modelling,to identify the membrane constitutive law and estimate associated parameters of a microcapsule from its steady deformed profile in a capillary tube.Compared with conventional inverse methods,the present approach is more accurate and can increase the prediction throughput rate by a few orders of magnitude.It can process capsules with large deformation in inertial flows.Furthermore,the method can predict the capsule membrane shear elasticity,area dilatation modulus and initial inflation from a single steady capsule profile.We explore the mechanism that the DCNN makes decisions by considering its feature maps,and discuss their potential implication on the development of inverse methods.The present method provides a promising tool which may enable high-throughput mechanical characterisation of microcapsules and biological cells in microfluidic flows. 展开更多
关键词 MICROCAPSULES flow cytometry deep convolutional neural network high throughput mechanical characterisation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部