This paper describes the biodiversity of cyanobacteria and microalgae of biological soil crusts(BSC)on bare substrates in different mountain vegetation types at the Northern Urals.In total,we identified 99 algal speci...This paper describes the biodiversity of cyanobacteria and microalgae of biological soil crusts(BSC)on bare substrates in different mountain vegetation types at the Northern Urals.In total,we identified 99 algal species from six divisions in all sampled sites.The species diversity and structure of BSC algal communities show a relationship with environmental factors(altitude,soil p H and humidity,and illumination).Taxonomic diversity of algae decreases along the altitude gradient from mountain meadow to mountain tundra.Algae and cyanobacteria species from six divisions were identified in meadow communities,five in mountain forests and four in mountain tundra.We observed a positive correlation between species diversity of phototrophic microorganisms and altitude in the forest communities,but a negative correlation in the tundra.The dominant complex of cyanobacterial and algal species in BSC was specific for each type of plant community and was reflective of the habitat conditions.The species diversity and morphological organization of the BSC algae thalli can be used as a criterion for the ongoing assessment of climatic changes in high latitudes and mountain regions.展开更多
基金supported by the Ministry of Education and Science of the Russian Federation project No.1021051101424-8-1.6.111.6.191.6.20。
文摘This paper describes the biodiversity of cyanobacteria and microalgae of biological soil crusts(BSC)on bare substrates in different mountain vegetation types at the Northern Urals.In total,we identified 99 algal species from six divisions in all sampled sites.The species diversity and structure of BSC algal communities show a relationship with environmental factors(altitude,soil p H and humidity,and illumination).Taxonomic diversity of algae decreases along the altitude gradient from mountain meadow to mountain tundra.Algae and cyanobacteria species from six divisions were identified in meadow communities,five in mountain forests and four in mountain tundra.We observed a positive correlation between species diversity of phototrophic microorganisms and altitude in the forest communities,but a negative correlation in the tundra.The dominant complex of cyanobacterial and algal species in BSC was specific for each type of plant community and was reflective of the habitat conditions.The species diversity and morphological organization of the BSC algae thalli can be used as a criterion for the ongoing assessment of climatic changes in high latitudes and mountain regions.