Objective To understand the molecular basis for a potential reaction mechanism and develop novel antibiotics with homology modeling for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase (HMGS). Methods The ...Objective To understand the molecular basis for a potential reaction mechanism and develop novel antibiotics with homology modeling for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase (HMGS). Methods The genetic engineering technology and the composer module of SYBYL7.0 program were used, while the HMGS three-dimensional structure was analyzed by homology modeling. Results The mvaS gene was cloned from Streptococcus pneumoniae and overexpressed in Escherichia coli from a pET28 vector. The expressed enzyme (about 46 kDa) was purified by affinity chromatography with a specific activity of 3.24 μmol/min/mg. Optimal conditions were pH 9.75 and 10 mmol/L MgCl2 at 37 ℃ The Vmax and Km were 4.69 μmol/min/mg and 213 μmol/L respectively. The 3D model of S.pneumoniae HMGS was established based on structure template of HMGS of Enterococcus faecalis. Conelusion The structure of HMGS will facilitate the structure-based design of alternative drugs to cholesterol-lowering therapies or to novel antibiotics to the Gram-positive cocci, whereas the recombinant HMGS will prove useful for drug development against a different enzyme in the mevalonate pathway.展开更多
基金supported by the National Natural Science Foundation of China (No. 30771429)Science and Technology Research Project of Ministry of Education (No.106116)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education (No. 20060511002)the Natural Science Foundation of Hubei Province (No. 2006ABA197)
文摘Objective To understand the molecular basis for a potential reaction mechanism and develop novel antibiotics with homology modeling for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase (HMGS). Methods The genetic engineering technology and the composer module of SYBYL7.0 program were used, while the HMGS three-dimensional structure was analyzed by homology modeling. Results The mvaS gene was cloned from Streptococcus pneumoniae and overexpressed in Escherichia coli from a pET28 vector. The expressed enzyme (about 46 kDa) was purified by affinity chromatography with a specific activity of 3.24 μmol/min/mg. Optimal conditions were pH 9.75 and 10 mmol/L MgCl2 at 37 ℃ The Vmax and Km were 4.69 μmol/min/mg and 213 μmol/L respectively. The 3D model of S.pneumoniae HMGS was established based on structure template of HMGS of Enterococcus faecalis. Conelusion The structure of HMGS will facilitate the structure-based design of alternative drugs to cholesterol-lowering therapies or to novel antibiotics to the Gram-positive cocci, whereas the recombinant HMGS will prove useful for drug development against a different enzyme in the mevalonate pathway.