The protein connector enhancer of kinase suppressor of Ras 2(CNKSR2),present in both the postsynaptic density and cytoplasm of neurons,is a scaffolding protein with several protein-binding domains.Variants of the CNKS...The protein connector enhancer of kinase suppressor of Ras 2(CNKSR2),present in both the postsynaptic density and cytoplasm of neurons,is a scaffolding protein with several protein-binding domains.Variants of the CNKSR2 gene have been implicated in neurodevelopmental disorders,particularly intellectual disability,although the precise mechanism involved has not yet been fully understood.Research has demonstrated that CNKSR2 plays a role in facilitating the localization of postsynaptic density protein complexes to the membrane,thereby influencing synaptic signaling and the morphogenesis of dendritic spines.However,the function of CNKSR2 in the cytoplasm remains to be elucidated.In this study,we used immunoprecipitation and high-resolution liquid chromatography-mass spectrometry to identify the interactors of CNKSR2.Through a combination of bioinformatic analysis and cytological experiments,we found that the CNKSR2 interactors were significantly enriched in the proteome of the centrosome.We also showed that CNKSR2 interacted with the microtubule protein DYNC1H1 and with the centrosome marker CEP290.Subsequent colocalization analysis confirmed the centrosomal localization of CNKSR2.When we downregulated CNKSR2 expression in mouse neuroblastoma cells(Neuro 2A),we observed significant changes in the expression of numerous centrosomal genes.This manipulation also affected centrosome-related functions,including cell size and shape,cell proliferation,and motility.Furthermore,we found that CNKSR2 interactors were highly enriched in de novo variants associated with intellectual disability and autism spectrum disorder.Our findings establish a connection between CNKSR2 and the centrosome,and offer new insights into the underlying mechanisms of neurodevelopmental disorders.展开更多
As a new type of fluorescent nanomaterials,carbon dots(CDs)have exhibited excellent photoluminescence properties with tunable emission and high quantum yields,hence they have attracted an increasing interest in divers...As a new type of fluorescent nanomaterials,carbon dots(CDs)have exhibited excellent photoluminescence properties with tunable emission and high quantum yields,hence they have attracted an increasing interest in diverse research areas.The photoluminescence performance of CDs is primarily influenced by their precursors,which directly or indirectly determine the structures and specific functions of the resultant CDs.In this review,we aim to summarize the recent progress on synthesis of CDs using small aliphatic molecules,anilines,polyphenol,polycyclic aromatic hydrocarbons,organic dyes,or biomass as precursors.The associations of the physical and chemical properties of the CDs with their respective precursors are comprehensively investigated,and the potential applications and future development of CDs are discussed in detail.It is hoped that this review will open new horizons for CDs preparation by rational selection of the precursors from the vastly available carbon sources and the critical comments presented,here could inspire and guide future research in the design of multifunctional CDs.展开更多
In this paper, we present a differential infectivity SIR epidemic model with modified saturation incidences and stochastic perturbations. We show that the stochastic epidemic model has a unique global positive solutio...In this paper, we present a differential infectivity SIR epidemic model with modified saturation incidences and stochastic perturbations. We show that the stochastic epidemic model has a unique global positive solution, and we utilize stochastic Lyapunov functions to show the asymptotic behavior of the solution.展开更多
基金supported by the National Nature Science Foundation of China,No.32101020(to JL)the Natural Science Foundation of Shandong Province,Nos.ZR2020MC071(to JL),ZR2023MH327(to HZ)+1 种基金the Integrated Project of Major Research Plan of National Natural Science Foundation of China,No.92249303(to PL)the Natural Science Foundation of Qingdao,No.23-2-1-193-zyyd-jch(to HZ)。
文摘The protein connector enhancer of kinase suppressor of Ras 2(CNKSR2),present in both the postsynaptic density and cytoplasm of neurons,is a scaffolding protein with several protein-binding domains.Variants of the CNKSR2 gene have been implicated in neurodevelopmental disorders,particularly intellectual disability,although the precise mechanism involved has not yet been fully understood.Research has demonstrated that CNKSR2 plays a role in facilitating the localization of postsynaptic density protein complexes to the membrane,thereby influencing synaptic signaling and the morphogenesis of dendritic spines.However,the function of CNKSR2 in the cytoplasm remains to be elucidated.In this study,we used immunoprecipitation and high-resolution liquid chromatography-mass spectrometry to identify the interactors of CNKSR2.Through a combination of bioinformatic analysis and cytological experiments,we found that the CNKSR2 interactors were significantly enriched in the proteome of the centrosome.We also showed that CNKSR2 interacted with the microtubule protein DYNC1H1 and with the centrosome marker CEP290.Subsequent colocalization analysis confirmed the centrosomal localization of CNKSR2.When we downregulated CNKSR2 expression in mouse neuroblastoma cells(Neuro 2A),we observed significant changes in the expression of numerous centrosomal genes.This manipulation also affected centrosome-related functions,including cell size and shape,cell proliferation,and motility.Furthermore,we found that CNKSR2 interactors were highly enriched in de novo variants associated with intellectual disability and autism spectrum disorder.Our findings establish a connection between CNKSR2 and the centrosome,and offer new insights into the underlying mechanisms of neurodevelopmental disorders.
基金supported by the National Natural Science Foundation of China(No.51973083)Fundamental Research Funds for the Central Universities(No.JUSRP22027).
文摘As a new type of fluorescent nanomaterials,carbon dots(CDs)have exhibited excellent photoluminescence properties with tunable emission and high quantum yields,hence they have attracted an increasing interest in diverse research areas.The photoluminescence performance of CDs is primarily influenced by their precursors,which directly or indirectly determine the structures and specific functions of the resultant CDs.In this review,we aim to summarize the recent progress on synthesis of CDs using small aliphatic molecules,anilines,polyphenol,polycyclic aromatic hydrocarbons,organic dyes,or biomass as precursors.The associations of the physical and chemical properties of the CDs with their respective precursors are comprehensively investigated,and the potential applications and future development of CDs are discussed in detail.It is hoped that this review will open new horizons for CDs preparation by rational selection of the precursors from the vastly available carbon sources and the critical comments presented,here could inspire and guide future research in the design of multifunctional CDs.
基金Acknowledgments The authors would like to thank the anonymous referees and the editor for their very helpful comments and suggestions. J. Wang and G. Li are supported by the Science and Technology Research Project of Department of Education of Heilongjiang Province (No. 12531495). J. Wang is supported by Natural Science Foundation of China (TianYuan, No. 11226255).
文摘In this paper, we present a differential infectivity SIR epidemic model with modified saturation incidences and stochastic perturbations. We show that the stochastic epidemic model has a unique global positive solution, and we utilize stochastic Lyapunov functions to show the asymptotic behavior of the solution.