As the amplitude of the unsteady flow oscillation is large or large changes occur in the mean background flow such as limit cycle oscillation,the traditional proper orthogonal decomposition reduced order model based o...As the amplitude of the unsteady flow oscillation is large or large changes occur in the mean background flow such as limit cycle oscillation,the traditional proper orthogonal decomposition reduced order model based on linearized time or frequency domain small disturbance solvers can not capture the main nonlinear features.A new nonlinear reduced order model based on the dynamically nonlinear flow equation was investigated.The nonlinear second order snapshot equation in the time domain for proper orthogonal decomposition basis construction was obtained from the Taylor series expansion of the flow solver.The NLR 7301 airfoil configuration and Goland+ wing/store aeroelastic model were used to validate the capability and efficiency of the new nonlinear reduced order model.The simulation results indicate that the proposed new reduced order model can capture the limit cycle oscillation of aeroelastic system very well,while the traditional proper orthogonal decomposition reduced order model will lose effectiveness.展开更多
Active stability augmentation system is an attractive and promising technology to suppress flutter and limit cycle oscillation (LCO). In order to design a good active control law, the control plant model with low orde...Active stability augmentation system is an attractive and promising technology to suppress flutter and limit cycle oscillation (LCO). In order to design a good active control law, the control plant model with low order and high accuracy must be provided, which is one of the most important key points. The traditional model is based on low fidelity aerodynamics model such as panel method, which is unsuitable for transonic flight regime. The physics-based high fidelity tools, reduced order model (ROM) and CFD/CSD coupled aeroservoelastic solver are used to design the active control law. The Volterra/ROM is applied to constructing the low order state space model for the nonlinear unsteady aerodynamics and static output feedback method is used to active control law design. The detail of the new method is demonstrated by the Goland+ wing/store system. The simulation results show that the effectiveness of the designed active augmentation system, which can suppress the flutter and LCO successfully.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 10902082)New Faculty Research Foundation of Xi’an Jiaotong University
文摘As the amplitude of the unsteady flow oscillation is large or large changes occur in the mean background flow such as limit cycle oscillation,the traditional proper orthogonal decomposition reduced order model based on linearized time or frequency domain small disturbance solvers can not capture the main nonlinear features.A new nonlinear reduced order model based on the dynamically nonlinear flow equation was investigated.The nonlinear second order snapshot equation in the time domain for proper orthogonal decomposition basis construction was obtained from the Taylor series expansion of the flow solver.The NLR 7301 airfoil configuration and Goland+ wing/store aeroelastic model were used to validate the capability and efficiency of the new nonlinear reduced order model.The simulation results indicate that the proposed new reduced order model can capture the limit cycle oscillation of aeroelastic system very well,while the traditional proper orthogonal decomposition reduced order model will lose effectiveness.
基金National Natural Science Foundation of China (10902082)New Faculty Research Foundation of XJTUthe Fundamental Research Funds for the Central Universities (xjj20100126)
文摘Active stability augmentation system is an attractive and promising technology to suppress flutter and limit cycle oscillation (LCO). In order to design a good active control law, the control plant model with low order and high accuracy must be provided, which is one of the most important key points. The traditional model is based on low fidelity aerodynamics model such as panel method, which is unsuitable for transonic flight regime. The physics-based high fidelity tools, reduced order model (ROM) and CFD/CSD coupled aeroservoelastic solver are used to design the active control law. The Volterra/ROM is applied to constructing the low order state space model for the nonlinear unsteady aerodynamics and static output feedback method is used to active control law design. The detail of the new method is demonstrated by the Goland+ wing/store system. The simulation results show that the effectiveness of the designed active augmentation system, which can suppress the flutter and LCO successfully.