The peroxisomal matrix oxidase,catalase and peroxidase are imported peroxisomes through the shuttling receptors,which regulates the cellular oxidative homeostasis and function.Here,we report that PTS1 shuttling recept...The peroxisomal matrix oxidase,catalase and peroxidase are imported peroxisomes through the shuttling receptors,which regulates the cellular oxidative homeostasis and function.Here,we report that PTS1 shuttling receptor FvPex5 is involved in the localization of PTS1,utilization of carbon sources and lipids,elimination ROS,cell wall stress,conidiation,fumonisin B_(1)(FB_(1))production,and virulence in maize pathogen Fusarium verticillioides.Significantly,differential expression of PTS1-,PTS2-,PEX-and FB_(1)toxin-related genes in wild type andΔFvpex5 mutant were examined by RNA-Seq analyses and confirmed by RT-PCR assay.In addition,different expression of PTS1 and PTS2 genes of theΔFvpex5 mutant were enriched in diverse biochemical pathways,such as carbon metabolism,nitrogen metabolism,lipid metabolism and the oxidation balance by combining GO and KEGG annotations.Overall,we showed that FvPex5 is involved in the regulation of genes associated with PTS,thereby affecting the oxidation balance,FB_(1)and virulence in F.verticillioides.The results help to clarify the functional divergence of Pex5 orthologs,and may provide a possible target for controlling F.verticillioides infections and FB_(1)biosynthesis.展开更多
森林生态系统在陆地碳循环过程中发挥着重要作用,关于温带落叶阔叶林生态系统碳平衡过程影响机制的讨论尚未统一。本研究于2019年对北京松山典型落叶阔叶林生态系统的净碳交换量(NEE)及空气温度(Ta)、土壤温度(Ts)、光合有效辐射(PAR)...森林生态系统在陆地碳循环过程中发挥着重要作用,关于温带落叶阔叶林生态系统碳平衡过程影响机制的讨论尚未统一。本研究于2019年对北京松山典型落叶阔叶林生态系统的净碳交换量(NEE)及空气温度(Ta)、土壤温度(Ts)、光合有效辐射(PAR)、饱和水气压差(VPD)、土壤含水量(SWC)、降雨量(P)等环境因子进行原位连续监测,分析松山落叶阔叶林生态系统净碳交换特征及其对环境因子的响应。结果表明:在日尺度上,NEE生长季(5—10月)各月平均日变化均呈"U"字形变化,日间为碳汇,夜间为碳源。其他月份NEE均为正值,变化平缓,表现为碳源。在季节尺度上,NEE呈单峰曲线变化规律,全年NEE为-111 g C·m-2·a-1,生态系统呼吸总量(Re)为555 g C·m-2·a-1,总生态系统生产力(GEP)为666 g C·m-2·a-1。碳吸收与释放量分别在6月与11月达到最大值。PAR是影响日间净碳交换量(NEEd)的主导因子,二者关系符合Michaelis-Menten模型,VPD是间接影响NEEd的主导因子,最适宜日间净碳交换的VPD范围为1~1.5 kPa。土壤温度是影响夜间净碳交换量(NEEn)的主导因子,SWC是NEEn的限制因子,SWC过高或过低均会对NEEn产生抑制,最适值为0.28 m3·m-3。展开更多
基金supported by the National Natural Science Foundation of China(31601599)the Science and Technology Innovation Funding of Fujian Agriculture and Forestry University,China(CXZX2020044A)。
文摘The peroxisomal matrix oxidase,catalase and peroxidase are imported peroxisomes through the shuttling receptors,which regulates the cellular oxidative homeostasis and function.Here,we report that PTS1 shuttling receptor FvPex5 is involved in the localization of PTS1,utilization of carbon sources and lipids,elimination ROS,cell wall stress,conidiation,fumonisin B_(1)(FB_(1))production,and virulence in maize pathogen Fusarium verticillioides.Significantly,differential expression of PTS1-,PTS2-,PEX-and FB_(1)toxin-related genes in wild type andΔFvpex5 mutant were examined by RNA-Seq analyses and confirmed by RT-PCR assay.In addition,different expression of PTS1 and PTS2 genes of theΔFvpex5 mutant were enriched in diverse biochemical pathways,such as carbon metabolism,nitrogen metabolism,lipid metabolism and the oxidation balance by combining GO and KEGG annotations.Overall,we showed that FvPex5 is involved in the regulation of genes associated with PTS,thereby affecting the oxidation balance,FB_(1)and virulence in F.verticillioides.The results help to clarify the functional divergence of Pex5 orthologs,and may provide a possible target for controlling F.verticillioides infections and FB_(1)biosynthesis.
文摘森林生态系统在陆地碳循环过程中发挥着重要作用,关于温带落叶阔叶林生态系统碳平衡过程影响机制的讨论尚未统一。本研究于2019年对北京松山典型落叶阔叶林生态系统的净碳交换量(NEE)及空气温度(Ta)、土壤温度(Ts)、光合有效辐射(PAR)、饱和水气压差(VPD)、土壤含水量(SWC)、降雨量(P)等环境因子进行原位连续监测,分析松山落叶阔叶林生态系统净碳交换特征及其对环境因子的响应。结果表明:在日尺度上,NEE生长季(5—10月)各月平均日变化均呈"U"字形变化,日间为碳汇,夜间为碳源。其他月份NEE均为正值,变化平缓,表现为碳源。在季节尺度上,NEE呈单峰曲线变化规律,全年NEE为-111 g C·m-2·a-1,生态系统呼吸总量(Re)为555 g C·m-2·a-1,总生态系统生产力(GEP)为666 g C·m-2·a-1。碳吸收与释放量分别在6月与11月达到最大值。PAR是影响日间净碳交换量(NEEd)的主导因子,二者关系符合Michaelis-Menten模型,VPD是间接影响NEEd的主导因子,最适宜日间净碳交换的VPD范围为1~1.5 kPa。土壤温度是影响夜间净碳交换量(NEEn)的主导因子,SWC是NEEn的限制因子,SWC过高或过低均会对NEEn产生抑制,最适值为0.28 m3·m-3。