Shuttle effect,poor conductivity and large volume expansion are the main factors that hinder the practical application of sulfur cathodes.Currently,rational structure designing of carbon-based sulfur hosts is the most...Shuttle effect,poor conductivity and large volume expansion are the main factors that hinder the practical application of sulfur cathodes.Currently,rational structure designing of carbon-based sulfur hosts is the most effective strategy to address the above issues.However,the preparation process of carbon-based sulfur hosts is usually complex and costly.Therefore,it is necessary to develop an efficient and cost-effective method to fabricate carbon hosts for high-performance sulfur cathodes.Herein,we reported the fabrication of a bio-derived nitrogen doped porous carbon materials(BNPC)via a molten-salt method for high performance sulfur cathodes.The long-range-ordered honeycomb structure of BNPC is favorable for the trapping of polysulfide(PS)species and accommodates the volumetric variation of sulfur during cycling,while the high graphitization degree of BNPC favors the redox kinetics of sulfur cathodes.Moreover,the nitrogen doping content not only enhances the electrical conductivity of BNPC,but also provides ample anchoring sites for the immobilization of PS,which plays a key role in suppressing the shuttle effect.As a result,the S@BNPC cathode exhibits a high initial specific capacity of 1189.4 mA·h/g at 0.2C.After 300 cycles,S@BNPC still maintains a capacity of 703.2 mA·h/g which corresponds to a fading rate of 0.13%per cycle after the second cycle.This work offers vast opportunities for the large-scale application of high performance carbon-based sulfur hosts.展开更多
Since the volume variation of silicon particles during cycling,the binding spots between Cu current collector and silicon anode raised to be one of the critical binding problems.In this work,an amino-modified Cu curre...Since the volume variation of silicon particles during cycling,the binding spots between Cu current collector and silicon anode raised to be one of the critical binding problems.In this work,an amino-modified Cu current collector(Cu^(*))is fabricated to tackle this issue.The amino groups on Cu^(*)surface increase its hydrophilicity,which is conducive to the curing process of aqueous slurry on its surface.Meanwhile,these amino groups can form abundant amide bonds with carboxyl groups from the adopted polyacrylic acid(PAA)binder.The combined action composed of the covalent bond and mechanical interlocking could reduce the contact loss inside the electrode.However,high concentration silane coupling agent treatment will weaken the surface roughness of Cu^(*)and weaken mechanical interlocking.What is more,the insulation of silane coupling agent reduces the conductivity of Cu and increases the impedance of battery.Considering the effect of silane coupling agent comprehensively,electrochemical performance of Cu^(*)-0.05%is best.展开更多
基金Project(2018YFB0104300)supported by the National Key R&D Program of ChinaProject(51774150)supported by the National Natural Science Foundation of China
文摘Shuttle effect,poor conductivity and large volume expansion are the main factors that hinder the practical application of sulfur cathodes.Currently,rational structure designing of carbon-based sulfur hosts is the most effective strategy to address the above issues.However,the preparation process of carbon-based sulfur hosts is usually complex and costly.Therefore,it is necessary to develop an efficient and cost-effective method to fabricate carbon hosts for high-performance sulfur cathodes.Herein,we reported the fabrication of a bio-derived nitrogen doped porous carbon materials(BNPC)via a molten-salt method for high performance sulfur cathodes.The long-range-ordered honeycomb structure of BNPC is favorable for the trapping of polysulfide(PS)species and accommodates the volumetric variation of sulfur during cycling,while the high graphitization degree of BNPC favors the redox kinetics of sulfur cathodes.Moreover,the nitrogen doping content not only enhances the electrical conductivity of BNPC,but also provides ample anchoring sites for the immobilization of PS,which plays a key role in suppressing the shuttle effect.As a result,the S@BNPC cathode exhibits a high initial specific capacity of 1189.4 mA·h/g at 0.2C.After 300 cycles,S@BNPC still maintains a capacity of 703.2 mA·h/g which corresponds to a fading rate of 0.13%per cycle after the second cycle.This work offers vast opportunities for the large-scale application of high performance carbon-based sulfur hosts.
基金Project(2019R01006)supported by the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang Province,ChinaProject(2018YFB0104300)supported by the National Key R&D Program of China。
文摘Since the volume variation of silicon particles during cycling,the binding spots between Cu current collector and silicon anode raised to be one of the critical binding problems.In this work,an amino-modified Cu current collector(Cu^(*))is fabricated to tackle this issue.The amino groups on Cu^(*)surface increase its hydrophilicity,which is conducive to the curing process of aqueous slurry on its surface.Meanwhile,these amino groups can form abundant amide bonds with carboxyl groups from the adopted polyacrylic acid(PAA)binder.The combined action composed of the covalent bond and mechanical interlocking could reduce the contact loss inside the electrode.However,high concentration silane coupling agent treatment will weaken the surface roughness of Cu^(*)and weaken mechanical interlocking.What is more,the insulation of silane coupling agent reduces the conductivity of Cu and increases the impedance of battery.Considering the effect of silane coupling agent comprehensively,electrochemical performance of Cu^(*)-0.05%is best.