CO_(2)electrochemical reduction(CO_(2)ER)to high-value fuels and chemicals is a promising strategy for using CO_(2)as a carbon source.However,the large-scale application of CO_(2)ER is limited by the lack of efficient...CO_(2)electrochemical reduction(CO_(2)ER)to high-value fuels and chemicals is a promising strategy for using CO_(2)as a carbon source.However,the large-scale application of CO_(2)ER is limited by the lack of efficient and selective electrocatalysts.By means of density functional theory(DFT)calculations,the potential of transitional metal-based covalent organic frameworks(TM-COFs,TM=Fe,Co,Ni,Cu,Zn,Ru,Rh,Pd,and Ag)as CO_(2)reduction electrocatalysts was systematically studied.The results show that the single TM atom can be firmly anchored on COFs for forming stable single-atom catalysts.The TM atom in phthalocyanine has excellent catalytic activity towards CO_(2)ER,while the pyridine N in pyrazine is the active site of the hydrogen evolution reaction(HER).Among studied candidates,Co-COF and Rh-COF are predicted to have limiting potential of-0.66/-0.11 and-0.49/-0.49 V for CO_(2)ER/HER,respectively.The present study may provide a new strategy for designing novel bifunctional catalysts.展开更多
Keggin-type phenylimido-polyoxometalates α-[PM12O39NPh]3- (M = W and Mo) have been systematically investigated on the electronic structures, redox as well as nonlinear optical (NLO) properties by density functional t...Keggin-type phenylimido-polyoxometalates α-[PM12O39NPh]3- (M = W and Mo) have been systematically investigated on the electronic structures, redox as well as nonlinear optical (NLO) properties by density functional theory (DFT). The strong M≡N bond confirmed by natural bond orbital (NBO) analysis comprises one σ bond and two π bonds, the same as Mo≡N in [Mo6O18NPh]2-. Furthermore, phenylimido segment effectively modifies the electronic properties of α-[PM12O39NPh]3-. On one hand, when enlarging the inorganic cluster from {Mo6O18} to {PMo12O39}, the energy gap between HOMO and LUMO in α-[PMo12O39NPh]3- decreased, resulting in enormously anodic shift for the reduction potential, while the excitation energy is less and the total second-order polarizability β0 is up to 438.3×10?30 esu, which is nearly 10 times larger than that of [Mo6O18NPh]2-. On the other hand, when metal W in α-[PM12O39NPh]3- is substituted by Mo, the interaction between Mo and N is enhanced and the redox ability becomes stronger. The β0 value for α-[PMo12O39NPh]3- is more than 5 times higher than that of α-[PW12O39NPh]3?. It indicates that changing appropriate metal or enlarging the inorganic cluster will improve the redox properties and second-order nonlinear response. Moreover, the electron transition for three compounds mentioned above occurred mainly from organoimido segment (as the electron donor) to polyanion cluster (as the acceptor). As a result, α-[PMo12O39NPh]3- may be a promising candidate for oxidant and nonlinear optical material.展开更多
The electronic properties and stabilities of five [Nb2W4O18OCH3]3-isomers have been investigated using a density functional theory method.The results show that the isomer with the methoxy group occupying a bridging po...The electronic properties and stabilities of five [Nb2W4O18OCH3]3-isomers have been investigated using a density functional theory method.The results show that the isomer with the methoxy group occupying a bridging position between two tungsten atoms(two tungsten atoms in the plane that contains two niobium atoms) in the [Nb2W4O18OCH3]3-framework is the most stable isomer in acetonitrile.The stability of the one-electron-reduced isomers changes little.The most stable one-electron-reduced isomer has the methoxy group occupying a bridging position between niobium atoms in the [Nb2W4O18OCH3]4-framework.The M-Ob(M = Nb,W;b denotes bridging) bond lengths in anions in which the metal atoms are connected by a methoxy group are longer than those in [Nb2W4O19]4-.The highest occupied molecular orbitals(HOMO) in [Nb2W4O19]4-mainly delocalize over the bridging oxygen atoms of two niobium atoms and two tungsten atoms located in the equatorial plane,and the bridging oxygen atoms on the axial surface.The lowest unoccupied molecular orbitals(LUMO) of [Nb2W4O19]4-are mainly concentrated on the tungsten atoms and antibonding oxygen atoms.Methoxy substitution modifies the electronic properties of the [Nb2W4O18OCH3]3-isomers.The HOMOs in the five isomers formally delocalize over the bridging oxygen atoms,which are distant from the surface containing the methoxy group and four metal atoms.The LUMOs delocalize over the d-shells of the four metal atoms that are close to the methoxy group,and the p-orbitals of oxygen.One-electron reduction occurred at the tungsten atoms,not the niobium atoms.展开更多
Based on spiro[fhiorene-9,90-xanthene](SFX, dye 1), the Lindqvist-type polyoxometalate(POM) functio- nalized with SFX and its derivatives(dyes 2--4) used in dye-sensitized solar cells(DSSCs) were designed and ...Based on spiro[fhiorene-9,90-xanthene](SFX, dye 1), the Lindqvist-type polyoxometalate(POM) functio- nalized with SFX and its derivatives(dyes 2--4) used in dye-sensitized solar cells(DSSCs) were designed and inves- tigated with the density functional theory(DFT) and time-dependent DFT(TD-DFT) calculations. The results indicate that Lindqvist-type POM is the main contribution to the lowest unoccupied molecular orbital(LUMO) and affects the LUMO energies of dyes 2--4. The maximum absorptions of the designed dyes containing POM(dyes 2--4) are red shifted comparing with that of dye 1. The introduction of electron-donating group onto SFX segment is helpful to red shift the absorption spectra. The major factors affecting the performance of DSSCs, including light harvesting and electron injection were evaluated. Considering the absorption spectra and photovoltaic parameters, dyes 3 and 4 are promising high performance dye sensitizers in n-type DSSCs.展开更多
基金the financial support by the Natural Science Foundation of Science and Technology Department of Jilin Province(20210101131JC)the Education Department of Jilin Province(JJKH20230217KJ).
文摘CO_(2)electrochemical reduction(CO_(2)ER)to high-value fuels and chemicals is a promising strategy for using CO_(2)as a carbon source.However,the large-scale application of CO_(2)ER is limited by the lack of efficient and selective electrocatalysts.By means of density functional theory(DFT)calculations,the potential of transitional metal-based covalent organic frameworks(TM-COFs,TM=Fe,Co,Ni,Cu,Zn,Ru,Rh,Pd,and Ag)as CO_(2)reduction electrocatalysts was systematically studied.The results show that the single TM atom can be firmly anchored on COFs for forming stable single-atom catalysts.The TM atom in phthalocyanine has excellent catalytic activity towards CO_(2)ER,while the pyridine N in pyrazine is the active site of the hydrogen evolution reaction(HER).Among studied candidates,Co-COF and Rh-COF are predicted to have limiting potential of-0.66/-0.11 and-0.49/-0.49 V for CO_(2)ER/HER,respectively.The present study may provide a new strategy for designing novel bifunctional catalysts.
基金Supported by National Natural Science Foundation of China (Grant No. 20573016)Training Fund of NENU’S Scientific Innovation Project (Grant No. NENU- STC07017)+1 种基金Science Foundation for Young Teachers of Northeast Normal University (Grant No. 20070304)Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT)
文摘Keggin-type phenylimido-polyoxometalates α-[PM12O39NPh]3- (M = W and Mo) have been systematically investigated on the electronic structures, redox as well as nonlinear optical (NLO) properties by density functional theory (DFT). The strong M≡N bond confirmed by natural bond orbital (NBO) analysis comprises one σ bond and two π bonds, the same as Mo≡N in [Mo6O18NPh]2-. Furthermore, phenylimido segment effectively modifies the electronic properties of α-[PM12O39NPh]3-. On one hand, when enlarging the inorganic cluster from {Mo6O18} to {PMo12O39}, the energy gap between HOMO and LUMO in α-[PMo12O39NPh]3- decreased, resulting in enormously anodic shift for the reduction potential, while the excitation energy is less and the total second-order polarizability β0 is up to 438.3×10?30 esu, which is nearly 10 times larger than that of [Mo6O18NPh]2-. On the other hand, when metal W in α-[PM12O39NPh]3- is substituted by Mo, the interaction between Mo and N is enhanced and the redox ability becomes stronger. The β0 value for α-[PMo12O39NPh]3- is more than 5 times higher than that of α-[PW12O39NPh]3?. It indicates that changing appropriate metal or enlarging the inorganic cluster will improve the redox properties and second-order nonlinear response. Moreover, the electron transition for three compounds mentioned above occurred mainly from organoimido segment (as the electron donor) to polyanion cluster (as the acceptor). As a result, α-[PMo12O39NPh]3- may be a promising candidate for oxidant and nonlinear optical material.
基金supported by the National Natural Science foundation of China (20971020, 21073030 and 21131001)the Doctoral Fund of the Ministry of Education of China (20100043120007)the Science and Technology Development Planning of Jilin Province (20100104)
文摘The electronic properties and stabilities of five [Nb2W4O18OCH3]3-isomers have been investigated using a density functional theory method.The results show that the isomer with the methoxy group occupying a bridging position between two tungsten atoms(two tungsten atoms in the plane that contains two niobium atoms) in the [Nb2W4O18OCH3]3-framework is the most stable isomer in acetonitrile.The stability of the one-electron-reduced isomers changes little.The most stable one-electron-reduced isomer has the methoxy group occupying a bridging position between niobium atoms in the [Nb2W4O18OCH3]4-framework.The M-Ob(M = Nb,W;b denotes bridging) bond lengths in anions in which the metal atoms are connected by a methoxy group are longer than those in [Nb2W4O19]4-.The highest occupied molecular orbitals(HOMO) in [Nb2W4O19]4-mainly delocalize over the bridging oxygen atoms of two niobium atoms and two tungsten atoms located in the equatorial plane,and the bridging oxygen atoms on the axial surface.The lowest unoccupied molecular orbitals(LUMO) of [Nb2W4O19]4-are mainly concentrated on the tungsten atoms and antibonding oxygen atoms.Methoxy substitution modifies the electronic properties of the [Nb2W4O18OCH3]3-isomers.The HOMOs in the five isomers formally delocalize over the bridging oxygen atoms,which are distant from the surface containing the methoxy group and four metal atoms.The LUMOs delocalize over the d-shells of the four metal atoms that are close to the methoxy group,and the p-orbitals of oxygen.One-electron reduction occurred at the tungsten atoms,not the niobium atoms.
基金Supported by the National Natural Science Foundation of China(Nos.21571031, 21131001).
文摘Based on spiro[fhiorene-9,90-xanthene](SFX, dye 1), the Lindqvist-type polyoxometalate(POM) functio- nalized with SFX and its derivatives(dyes 2--4) used in dye-sensitized solar cells(DSSCs) were designed and inves- tigated with the density functional theory(DFT) and time-dependent DFT(TD-DFT) calculations. The results indicate that Lindqvist-type POM is the main contribution to the lowest unoccupied molecular orbital(LUMO) and affects the LUMO energies of dyes 2--4. The maximum absorptions of the designed dyes containing POM(dyes 2--4) are red shifted comparing with that of dye 1. The introduction of electron-donating group onto SFX segment is helpful to red shift the absorption spectra. The major factors affecting the performance of DSSCs, including light harvesting and electron injection were evaluated. Considering the absorption spectra and photovoltaic parameters, dyes 3 and 4 are promising high performance dye sensitizers in n-type DSSCs.