In order to effectively detect potential geology anomalous bodies in coal bearing formation,such as coal seam thickness variation,small faults,goafs and collapse columns,and provide scientific guidance for safe and ef...In order to effectively detect potential geology anomalous bodies in coal bearing formation,such as coal seam thickness variation,small faults,goafs and collapse columns,and provide scientific guidance for safe and efficient mining,the SUMMIT-II EX explosion-proof seismic slot wave instrument,produced by German DMT Company,was used to detect the underground channel wave with the help of transmission method,reflection method and transflective method.Region area detection experiment in mining face had been carried out thanks to the advantage of channel wave,such as its great dispersion,abundant geology information,strong anti-interference ability and long-distance detecting.The experimental results showed that:(1)Coal seam thickness variation in extremely unstable coal seam has been quantitatively interpreted with an accuracy of more than 80%generally;(2)The faults,goafs and collapse columns could be detected and predicted accurately;(3)Experimental detection of gas enrichment areas,stress concentration regions and water inrush risk zone has been collated;(4)A research system of disaster-causing geology anomalous body detection by in-seam seismic survey has been built,valuable and innovative achievements have been got.Series of innovation obtained for the first time in this study indicated that it was more effective to detect disaster-causing potential geology anomalies by in-seam seismic survey than by ground seismic survey.It had significant scientific value and application prospect under complex coal seam conditions.展开更多
We used matched filter, spectrum analysis, and continuation methods of potential field for data processing and obtained the geomagnetic field distribution about the continent and continental margin in southeast China....We used matched filter, spectrum analysis, and continuation methods of potential field for data processing and obtained the geomagnetic field distribution about the continent and continental margin in southeast China. On the basis of grid data, inversion was conducted and magnetic field distribution and magnetic structure on bedding of different depths were obtained. The new results show that: 1. The magnetic field characteristics are largely different in horizontal and vertical directions and they can be divided into zones according to the continental blocks of Yangtze, Cathaysia, Kangdian (Sichuan-Yunnan) and Qinling-Dabie. 2. The Tanlu fault extends southward along the Ganjiang fault and the Wuchuan-Sihui fault after it crossed over the Yangtze River and was offset locally in the east-west direction. The Tanlu fault finally slips into the South China Sea at Hainan Island. 3. The boundary between Yangtze and Cathaysia blocks starts from Hangzhou Bay in the east, extends along Jiangshao fault and passes through Nanchang, Changsha, and Guilin, and finally enters the sea at Qinzhou, Guangxi. 4. The distribution of buried structure zone is located at 24.5°-26° N.展开更多
基金supported by the Key Project of the National Natural Science Foundation of China(Grant No.41130419).
文摘In order to effectively detect potential geology anomalous bodies in coal bearing formation,such as coal seam thickness variation,small faults,goafs and collapse columns,and provide scientific guidance for safe and efficient mining,the SUMMIT-II EX explosion-proof seismic slot wave instrument,produced by German DMT Company,was used to detect the underground channel wave with the help of transmission method,reflection method and transflective method.Region area detection experiment in mining face had been carried out thanks to the advantage of channel wave,such as its great dispersion,abundant geology information,strong anti-interference ability and long-distance detecting.The experimental results showed that:(1)Coal seam thickness variation in extremely unstable coal seam has been quantitatively interpreted with an accuracy of more than 80%generally;(2)The faults,goafs and collapse columns could be detected and predicted accurately;(3)Experimental detection of gas enrichment areas,stress concentration regions and water inrush risk zone has been collated;(4)A research system of disaster-causing geology anomalous body detection by in-seam seismic survey has been built,valuable and innovative achievements have been got.Series of innovation obtained for the first time in this study indicated that it was more effective to detect disaster-causing potential geology anomalies by in-seam seismic survey than by ground seismic survey.It had significant scientific value and application prospect under complex coal seam conditions.
基金jointly supported by China National Natural Science Foundation(Grant No.40074020)by a special fund(Grant No.40242004).
文摘We used matched filter, spectrum analysis, and continuation methods of potential field for data processing and obtained the geomagnetic field distribution about the continent and continental margin in southeast China. On the basis of grid data, inversion was conducted and magnetic field distribution and magnetic structure on bedding of different depths were obtained. The new results show that: 1. The magnetic field characteristics are largely different in horizontal and vertical directions and they can be divided into zones according to the continental blocks of Yangtze, Cathaysia, Kangdian (Sichuan-Yunnan) and Qinling-Dabie. 2. The Tanlu fault extends southward along the Ganjiang fault and the Wuchuan-Sihui fault after it crossed over the Yangtze River and was offset locally in the east-west direction. The Tanlu fault finally slips into the South China Sea at Hainan Island. 3. The boundary between Yangtze and Cathaysia blocks starts from Hangzhou Bay in the east, extends along Jiangshao fault and passes through Nanchang, Changsha, and Guilin, and finally enters the sea at Qinzhou, Guangxi. 4. The distribution of buried structure zone is located at 24.5°-26° N.