A novel 1-methylimidazole ionic liquid modified SBA15 mesoporous silica(1-MIIL@SBA15) was synthesized and applied to selective separation of inorganic arsenic(iAs) in rice by dispersive solid phase extraction(DSPE), f...A novel 1-methylimidazole ionic liquid modified SBA15 mesoporous silica(1-MIIL@SBA15) was synthesized and applied to selective separation of inorganic arsenic(iAs) in rice by dispersive solid phase extraction(DSPE), followed by hydride generation-atomic fluorescence spectrometric(HG-AFS) quantification. The prepared sorbent was characterized by FTIR, FESEM, BET and Zeta potential. Key parameters of adsorption and desorption in DSPE were optimized using standard reference material 1568 b rice flour. Under optimal conditions, the limit of detection was 8.776 ng/kg, relative standard deviation was ≤2.0%, and recoveries of iAs were in the 92.3~94.4% range. This method was successfully applied to the determination of iAs in rice. Under acidic condition, the electrostatic interaction between the positively charged 1-MIIL@SBA15 and anionic iAs played an important role in selective iAs separation, rendering this method suitable for iAs analysis.展开更多
基金Financially supported by the National Natural Science Foundation of China(No.31701708)the Outstanding Youth Foundation Project of Fujian Agriculture and Forestry University of China(No.xjq201710)
文摘A novel 1-methylimidazole ionic liquid modified SBA15 mesoporous silica(1-MIIL@SBA15) was synthesized and applied to selective separation of inorganic arsenic(iAs) in rice by dispersive solid phase extraction(DSPE), followed by hydride generation-atomic fluorescence spectrometric(HG-AFS) quantification. The prepared sorbent was characterized by FTIR, FESEM, BET and Zeta potential. Key parameters of adsorption and desorption in DSPE were optimized using standard reference material 1568 b rice flour. Under optimal conditions, the limit of detection was 8.776 ng/kg, relative standard deviation was ≤2.0%, and recoveries of iAs were in the 92.3~94.4% range. This method was successfully applied to the determination of iAs in rice. Under acidic condition, the electrostatic interaction between the positively charged 1-MIIL@SBA15 and anionic iAs played an important role in selective iAs separation, rendering this method suitable for iAs analysis.