The Liaohe crude oil with high total acid number (TAN) was subjected to thermal reaction at 300 ℃ to 500℃. Reaction products were collected and analyzed by negative-ion electrospray ionization Fourier transform io...The Liaohe crude oil with high total acid number (TAN) was subjected to thermal reaction at 300 ℃ to 500℃. Reaction products were collected and analyzed by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to determine acid compounds in the crude oil. The double-bond equivalence (DBE) versus carbon number was used to characterize the oxygenated components in the feed and reaction products. The 02 class which mainly corresponds to naphthenic acids decarboxylated at 350-400℃, resulting in a sharply decrease in TAN. Phenols (O1 class) are more thermally stable than carboxylic acids. Carboxylic acids were also thermally cracked into smaller molecular size acids, evidenced by the presence of acetic acid, propanoic acid, and butyric acid in the liquid product. These small acid species are strong acids likely responsible for corrosion problems in refineries.展开更多
基金supported by the National Natural Science Foundation of China (NSFC, 21236009)National Basic Research Program of China(2010CB226901)
文摘The Liaohe crude oil with high total acid number (TAN) was subjected to thermal reaction at 300 ℃ to 500℃. Reaction products were collected and analyzed by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to determine acid compounds in the crude oil. The double-bond equivalence (DBE) versus carbon number was used to characterize the oxygenated components in the feed and reaction products. The 02 class which mainly corresponds to naphthenic acids decarboxylated at 350-400℃, resulting in a sharply decrease in TAN. Phenols (O1 class) are more thermally stable than carboxylic acids. Carboxylic acids were also thermally cracked into smaller molecular size acids, evidenced by the presence of acetic acid, propanoic acid, and butyric acid in the liquid product. These small acid species are strong acids likely responsible for corrosion problems in refineries.