Let F be a family of functions meromorphic in a domain D, let m, n k , k be three positive integers and b be a finite nonzero complex number. Suppose that, (1) for eachf∈F, all zeros of f have multiplicities at least...Let F be a family of functions meromorphic in a domain D, let m, n k , k be three positive integers and b be a finite nonzero complex number. Suppose that, (1) for eachf∈F, all zeros of f have multiplicities at least k ; (2) for each pair of functions f, g ∈F,P(f)H(f) and P(g)H(g) share b, where P(f) and H(f) were defined as (1.1) and (1.2) and nk ≥ max 1≤i≤k-1 {n i }; (3) m ≥ 2 or nk ≥ 2, k ≥ 2, then F is normal in D.展开更多
In this paper,we mainly discuss entire solutions of finite order of the following Fermat type differential-difference equation[f(k)(z)]2+[△cf(z)]2=1,and the systems of differential-difference equations of the from ■...In this paper,we mainly discuss entire solutions of finite order of the following Fermat type differential-difference equation[f(k)(z)]2+[△cf(z)]2=1,and the systems of differential-difference equations of the from ■Our results can be proved to be the sufficient and necessary solutions to both equation and systems of equations.展开更多
基金Foundation item: Supported by the NNSF of China(11071083) Supported by the National Natural Science Foundation of Tianyuan Foundation(11126267)
文摘Let F be a family of functions meromorphic in a domain D, let m, n k , k be three positive integers and b be a finite nonzero complex number. Suppose that, (1) for eachf∈F, all zeros of f have multiplicities at least k ; (2) for each pair of functions f, g ∈F,P(f)H(f) and P(g)H(g) share b, where P(f) and H(f) were defined as (1.1) and (1.2) and nk ≥ max 1≤i≤k-1 {n i }; (3) m ≥ 2 or nk ≥ 2, k ≥ 2, then F is normal in D.
基金supported by the National Natural Science Foundation of China(11701188)
文摘In this paper,we mainly discuss entire solutions of finite order of the following Fermat type differential-difference equation[f(k)(z)]2+[△cf(z)]2=1,and the systems of differential-difference equations of the from ■Our results can be proved to be the sufficient and necessary solutions to both equation and systems of equations.