The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for...The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.展开更多
In this paper, stochastic stabilization is investigated by max-plus algebra for a Markovian jump cloud control system with a reference signal. For the Markovian jump cloud control system, there exists framework adjust...In this paper, stochastic stabilization is investigated by max-plus algebra for a Markovian jump cloud control system with a reference signal. For the Markovian jump cloud control system, there exists framework adjustment whose evolution is satisfied with a Markov chain. Using max-plus algebra, a maxplus stochastic system is used to describe the Markovian jump cloud control system. A causal feedback matrix is obtained by exponential stability analysis for a causal feedback controller of the Markovian jump cloud control system. A sufficient condition is given to ensure existence on the causal feedback matrix of the causal feedback controller. Based on the causal feedback controller, stochastic stabilization in probability is analyzed for the Markovian jump cloud control system with a reference signal.Simulation results are given to show effectiveness of the causal feedback controller for the Markovian jump cloud control system.展开更多
文摘The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.
基金supported by the National Natural Science Foundation of China (61973230)Tianjin Research Innovation Project for Postgraduate Students (2021YJSO2S03)。
文摘In this paper, stochastic stabilization is investigated by max-plus algebra for a Markovian jump cloud control system with a reference signal. For the Markovian jump cloud control system, there exists framework adjustment whose evolution is satisfied with a Markov chain. Using max-plus algebra, a maxplus stochastic system is used to describe the Markovian jump cloud control system. A causal feedback matrix is obtained by exponential stability analysis for a causal feedback controller of the Markovian jump cloud control system. A sufficient condition is given to ensure existence on the causal feedback matrix of the causal feedback controller. Based on the causal feedback controller, stochastic stabilization in probability is analyzed for the Markovian jump cloud control system with a reference signal.Simulation results are given to show effectiveness of the causal feedback controller for the Markovian jump cloud control system.