The PWI/WFC data onboard Geotail during one burst time interval when Geotail is skimming a magnetic reconnection diffusion region in the near-Earth magnetotail is carefully analyzed.Both the whistler-mode wave and the...The PWI/WFC data onboard Geotail during one burst time interval when Geotail is skimming a magnetic reconnection diffusion region in the near-Earth magnetotail is carefully analyzed.Both the whistler-mode wave and the electrostatic solitary wave are found within the region with density depletion on the boundary layer near the magnetic reconnection X-line.The whistler-mode wave is electromagnetic whistler wave propagating quasi-parallel to the ambient field with a small angle between the wave vector and the ambient magnetic field.The whistler-mode wave associated with ESWs suggests that enhanced electromagnetic whistler-mode fluctuations can also be generated after the decay of the ESWs,which is different from the 2-D PIC simulation results.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41304132)the 53-class General Financial Grant from the China Postdoctoral Science Foundation(Grant No.2013M532115)+1 种基金the Post-Doctoral Research Program of China(Grant No.42956)the National Basic Research Program of China
文摘The PWI/WFC data onboard Geotail during one burst time interval when Geotail is skimming a magnetic reconnection diffusion region in the near-Earth magnetotail is carefully analyzed.Both the whistler-mode wave and the electrostatic solitary wave are found within the region with density depletion on the boundary layer near the magnetic reconnection X-line.The whistler-mode wave is electromagnetic whistler wave propagating quasi-parallel to the ambient field with a small angle between the wave vector and the ambient magnetic field.The whistler-mode wave associated with ESWs suggests that enhanced electromagnetic whistler-mode fluctuations can also be generated after the decay of the ESWs,which is different from the 2-D PIC simulation results.