To better understand soil moisture dynamics in the Yangtze River Estuary (YRE) and predict its variation in a simple way, a field monitoring experiment was carried out along the north branch of the Yangtze River, wh...To better understand soil moisture dynamics in the Yangtze River Estuary (YRE) and predict its variation in a simple way, a field monitoring experiment was carried out along the north branch of the Yangtze River, where seawater intrusion was strong and salt-water variation is one of the limiting factors of local agriculture. In present paper, relation between antecedent precipitation index (API) and soil water content is studied, and effects of groundwater depth on soil water content was analyzed. A relatively accurate prediction result of soil water content was reached using a neural network model. The impact analysis result showed that the variation of the API was consistent with soil water content and it displayed significant correlations with soil water content in both 20 and 50 cm soil layer, and higher correlation was observed in the layer of 20 cm. Groundwater impact analysis suggested that soil moisture was affected by the depth of groundwater, and was affected more greatly by groundwater at depth of 50 cm than that at 20 cm layer. By introducing API, groundwater depth and temperature together, a BP artificial network model was established to predict soil water content and an acceptable agreement was achieved. The model can be used for supplementing monitoring data of soil water content and predicting soil water content in shallow groundwater areas, and can provide favorable support for the research of water and salt transport in estuary area.展开更多
Careful soil management is important for the soil quality and productivity improvement of the reclaimed coastal tidal flat saline land in northern Jiangsu Province, China. Farmyard manure( FYM) and mulch application...Careful soil management is important for the soil quality and productivity improvement of the reclaimed coastal tidal flat saline land in northern Jiangsu Province, China. Farmyard manure( FYM) and mulch applications, which affect soil characteristics and plant significantly, are regard as an effective pattern of saline land improvement. As a conventional management in the study region, FYM and mulch are used for the amendment of the new reclaimed tidal flat regularly, but little is known about their effects on soil physical properties functioning. A study was conducted on a typical coastal tidal flat saline land, which was reclaimed in 2005, to evaluate the effects of FYM, polyethylene film mulch(PM), straw mulch(SM), FYM combined with PM(FYM+PM), FYM combined with SM(FYM+SM), on soil hydraulic properties and soil mechanical impedance. CK represented conventional cultivation in study area without FYM and mulch application and served as a control. The experiment, laid out in a randomized complete block design with three replications, was studied in Huanghaiyuan Farm, which specialized in the agricultural utilization for coastal tidal flat. Result showed that capillary water holding capacity(CHC), saturated water content(SWC), saturated hydraulic conductivity( Ks) and bulk density(BD), cone index(CI) were affected significantly by the FYM and mulch application, especially in the 0-10 cm soil layer. FYM and mulch management increased CHC, SWC and Ks over all soil depth in the order of FYM+SM〉FYM+PM〉FYM〉SM〉PM〉CK. With the contrary sequence, BD and CI decreased significantly; however, FYM and mulch application affected BD and CI only in the upper soil layers. CHC, SWC and Ks decreased significantly with the increasing of soil depth, BD and CI, and a significant liner equation was found between CHC, SWC, Ks and BD, CI. With the highest CHC(38.15%), SWC(39.55%), Ks(6.00 mm h-1) and the lowest BD(1.26 g cm-3) and CI(2.71 MPa), the combined management of FYM and SM was recommend to be an effective method for the melioration of reclaimed coastal tidal flat saline soil.展开更多
More and more attention is being focused on saline water utilization in irrigation due to the shortage of fresh water to agriculture in many regions. For purpose of reducing the risks of using of saline water for irri...More and more attention is being focused on saline water utilization in irrigation due to the shortage of fresh water to agriculture in many regions. For purpose of reducing the risks of using of saline water for irrigation, the mechanism of soil moisture and salinity distribution and transport should be well understood for developing optimum management strategies. In this paper, field experiments were carried out at Junggar Basin, China, to study the effects of drip irrigation water quality and drip tape arrangement on distribution of soil salinity and soil moisture. Six treatments were designed, including two drip tape arrangement modes and three irrigation water concentration levels (0.24, 4.68, and 7.42 dS m^-l). Results showed that, soil moisture content (SMC) directly beneath the drip tape in all treatments kept a relatively high value about 18% before boll opening stage; the SMC in the narrow strip in single tape arrangement (Ms) plot was obviously lower than that in the double tapes arrangement (Md) plot, indicating that less sufficient water was supplied under the same condition of irrigation depth, but there was no significant reduction in yield. Mulching had not significant influence on salt accumulation but the drip tape arrangement, under the same condition of irrigation water depth and quality, compared with Md, Ms reduced salt accumulation in root zone and brought about relatively high cotton yield.展开更多
The aim of this paper was to research the spatio-temporal changes in total soluble salt content (TS) in a typical arid region of South Xinjiang, China, where the climate is arid and soil salinization happens easily....The aim of this paper was to research the spatio-temporal changes in total soluble salt content (TS) in a typical arid region of South Xinjiang, China, where the climate is arid and soil salinization happens easily. The total soluble salt content was interpreted by measurements made in the horizontal mode with EM38 and EM31. The electromagnetic induction (EM) surveys were made three times with the apparent soil electrical conductivity (ECa) measurements taken at 3 873 locations in Nov. 2008, 4 807 locations in Apr. 2009 and 6 324 locations in Nov. 2009, respectively. For interpreting the ECa measurements into total soluble salt content, calibtion sites were needed for EM survey of each time, e.g., 66 sites were selected in Nov. 2008 to measure ECa, and soils-core samples were taken by different depth layers of 0-10, 10-20 and 20-40 cm at the same time. On every time duplicate samples were taken at five sites to allevaite the local-scale variability, and soil temperatures in different layers through the profiles were also measured. Factors including TS, pH, water content, bulk density were analyzed by lab experiments. ECa calibration equations were obtained by linear regression analysis, which indicated that soil salinity was one primary concern to ECa with a determination coefficient of 0.792 in 0-10 cm layer, 0.711 in 10-20 cm layer and 0.544 in 20-40 cm layer, respectively. The maps of spatial distribution were predicted by Kriging interpolation, which showed that the high soil salinity was located near the drainage canal, which validated the trend effect caused by the irrigation canal and the drainage canal. And by comparing the soil salinity in different layers, the soluble salt accumulated to the top soil surface only in the area where the soil salinization was serious, and in the other areas, the soil salinity trended to increase from the top soil surface to 40 cm depth. Temporal changes showed that the soil salinity in November was higher than that in April, and the soil salinization trended to aggravate, especially in the top soil layer of 0-10 cm.展开更多
Asia is the largest distribution area of salt-affected soils in the world. Very few countries in Asia couldescape from hazard of salinization. This paper deals with various salt-affected soils spreading in East Asiaan...Asia is the largest distribution area of salt-affected soils in the world. Very few countries in Asia couldescape from hazard of salinization. This paper deals with various salt-affected soils spreading in East Asiaand its neighboring regions (including China, Japan, Kampuchea, Democratic People’s Republic of Korea,Republic of Korea, Laos, Mongolia, Burma, Thailand and Vietnam). Principles of occurrence of salinization,and features of salt-affected soils in these regions have been studied in the present paper. Based on studieson types, features and distribution patterns of salt-affected soils, a salt-affected soil map of East Asia andits neighboring regions has been complied. Mechanism and manifestation of the salinization hazard on theregional agriculture and ecological environment, measures of preventing salinization hazard and exploitingsalt-affected soils in these regions are also discussed.展开更多
A laboratory salt-water dynamics experiment using unsaturated soils in packed silt loam and clay soil columns withdifferent soil texture profiles and groundwater levels under crops were conducted to study the changes ...A laboratory salt-water dynamics experiment using unsaturated soils in packed silt loam and clay soil columns withdifferent soil texture profiles and groundwater levels under crops were conducted to study the changes of salt-waterdynamics induced by water uptake of crops and to propose the theoretical basis for the regulation and control of salt-water dynamics as well as to predict salinity levels. The HYDRUS 1D model was applied to simulate the one-dimensionalmovement of water and salt transport in the soil columns. The results showed that the salts mainly accumulated in theplow layer in the soil columns under crops. Soil water and salt both moved towards the plow layer due to soil waterabsorption by the crop root system. The salt contents in the column with lower groundwater were mostly greater thanthose with high groundwater. The water contents in the soil columns increased from top to the bottom due to plant rootwater uptake. The changes in groundwater level had little influence on water content of the root zone in the soil columnswith crop planting. Comparison between the simulated and the determined values showed that model simulation resultswere ideal, so it is practicable to do numerical simulation of soil salt and water transport by the HYDRUS 1D model.Furthermore, if the actual movement of salt and water in fields is to be described in detail, much work needs to be done.The most important thing is to refine the parameters and select precise boundary conditions.展开更多
During the past century,natural and human modifications of environmental systems have greatly accelerated coastal salt marsh deterioration and shoreline retreat in many regions worldwide. Field investigation,profile a...During the past century,natural and human modifications of environmental systems have greatly accelerated coastal salt marsh deterioration and shoreline retreat in many regions worldwide. Field investigation,profile analysis,geographical information analysis,and remote sensing were employed in combination to study the effect of sediment on Spartina alterniflora salt marshes of the coast in Jiangsu Province,East China. The results indicated that the propagation of Spartina alterniflora salt marshes was closely related to regional sediment conditions,especially the supply of fine-grained materials. Additionally,because of the dense and high grass in Spartina alterniflora salt marshes,wave energy and tidal currents were baffled and weaker than those of the adjacent,unvegetated mud flats. Fine sediment was hardly resuspended under the low energy conditions in the Spartina alterniflora salt marshes.展开更多
Land use practice significantly affects soil properties. Soil is a major sink for atmospheric carbon, and soil organic carbon (SOC) is considered as an essential indicator of soil quality. The objective of this stud...Land use practice significantly affects soil properties. Soil is a major sink for atmospheric carbon, and soil organic carbon (SOC) is considered as an essential indicator of soil quality. The objective of this study was to assess the effects of N and P applied to Suaeda salsa on biomass production, SOC concentration, labile organic carbon (LOC) concentration, SOC pool and carbon management index (CMI) as well as the effect of the land use practice on soil quality of coastal tidal lands in east coastal region of China. The study provided relevant references for coastal exploitation, tidal land management and related study in other countries and regions. The field experiment was laid out in a randomized complete block design, consisting of four N-fertilization rates (0 (NO), 60 (N1), 120 (N2) and 180 kg ha-1 (N3)), three P-fertilization rates (0 (P0), 70 (P1) and 105 kg ha-~ (P2)) and bare land without vegetation. N and P applied to S. salsa on coastal tidal lands significantly affected biomass production (above-ground biomass and roots), bulk density (Pb), available N and P, SOC, LOC, SOC pool and CMI. Using statistical analysis, significantly interactions in N and P were observed for biomass production and the dominant factor for S. salsa production was N in continuous 2-yr experiments. There were no significant interactions between N and P for SOC concentration, LOC concentration and SOC pool. However, significant interaction was obtained for CMI at the 0-20 cm depth and N played a dominant role in the variation of CMI. There were significant improvements for soil measured attributes and parameters, which suggested that increasing the rates of N and P significantly decreased Pb at the 0-20 cm depth and increased available N and P, SOC, LOC, SOC pool as well as CMI at both the 0-20 and 20-40 cm depth, respectively. By correlation analysis, there were significantly positive correlations between biomass (above- ground biomass and roots) and SOC as well as LOC in 2010 and 2011 across all soil depth, respectively. The treatment with N at 180 kg ha-~ and P at 105 kg ha-1 was superior to the other treatments. The results from the 2-yr continuous experiments indicated that, in short-term, there were a few accumulation of SOC and LOC concentrations by means of N and P application to S. salsa, whereas in the long run, S. salsa with N and P application was recommended for coastal tidal lands because of its great potential of carbon sequestration, improvements of soil nutrition status and promotion of soil quality.展开更多
基金financially supported by the Ecological and Environmental Monitoring Project (JJ[2011]-017)funded by the Executive Office of the Three Gorges Project Construction Committee of the State Council of China+1 种基金the National Non-Profit Research Program of China (200903001)the National Basic Research Program of China(2010CB429001)
文摘To better understand soil moisture dynamics in the Yangtze River Estuary (YRE) and predict its variation in a simple way, a field monitoring experiment was carried out along the north branch of the Yangtze River, where seawater intrusion was strong and salt-water variation is one of the limiting factors of local agriculture. In present paper, relation between antecedent precipitation index (API) and soil water content is studied, and effects of groundwater depth on soil water content was analyzed. A relatively accurate prediction result of soil water content was reached using a neural network model. The impact analysis result showed that the variation of the API was consistent with soil water content and it displayed significant correlations with soil water content in both 20 and 50 cm soil layer, and higher correlation was observed in the layer of 20 cm. Groundwater impact analysis suggested that soil moisture was affected by the depth of groundwater, and was affected more greatly by groundwater at depth of 50 cm than that at 20 cm layer. By introducing API, groundwater depth and temperature together, a BP artificial network model was established to predict soil water content and an acceptable agreement was achieved. The model can be used for supplementing monitoring data of soil water content and predicting soil water content in shallow groundwater areas, and can provide favorable support for the research of water and salt transport in estuary area.
基金the Special Fund for Agro-Scientific Research in the Public Interest of China (200903001)the National Natural Science Foundation of China (41171181, 41101199)+2 种基金the Natural Science Foundation of Jiangsu Province, China (BK2009337, BK2011423, BK2011425, BK2011883)the Project of Enterprise Academician Workstation of Jiangsu Province, China (BM2009622)the Prospective Project of Production Education Research Cooperation of Jiangsu Province, China (BY2011195)
文摘Careful soil management is important for the soil quality and productivity improvement of the reclaimed coastal tidal flat saline land in northern Jiangsu Province, China. Farmyard manure( FYM) and mulch applications, which affect soil characteristics and plant significantly, are regard as an effective pattern of saline land improvement. As a conventional management in the study region, FYM and mulch are used for the amendment of the new reclaimed tidal flat regularly, but little is known about their effects on soil physical properties functioning. A study was conducted on a typical coastal tidal flat saline land, which was reclaimed in 2005, to evaluate the effects of FYM, polyethylene film mulch(PM), straw mulch(SM), FYM combined with PM(FYM+PM), FYM combined with SM(FYM+SM), on soil hydraulic properties and soil mechanical impedance. CK represented conventional cultivation in study area without FYM and mulch application and served as a control. The experiment, laid out in a randomized complete block design with three replications, was studied in Huanghaiyuan Farm, which specialized in the agricultural utilization for coastal tidal flat. Result showed that capillary water holding capacity(CHC), saturated water content(SWC), saturated hydraulic conductivity( Ks) and bulk density(BD), cone index(CI) were affected significantly by the FYM and mulch application, especially in the 0-10 cm soil layer. FYM and mulch management increased CHC, SWC and Ks over all soil depth in the order of FYM+SM〉FYM+PM〉FYM〉SM〉PM〉CK. With the contrary sequence, BD and CI decreased significantly; however, FYM and mulch application affected BD and CI only in the upper soil layers. CHC, SWC and Ks decreased significantly with the increasing of soil depth, BD and CI, and a significant liner equation was found between CHC, SWC, Ks and BD, CI. With the highest CHC(38.15%), SWC(39.55%), Ks(6.00 mm h-1) and the lowest BD(1.26 g cm-3) and CI(2.71 MPa), the combined management of FYM and SM was recommend to be an effective method for the melioration of reclaimed coastal tidal flat saline soil.
基金supported by the National Natural Science Foundation of China(40771097)the Special Fund of Industrial(Agriculture)Research for Public Welfare of China(200903001)
文摘More and more attention is being focused on saline water utilization in irrigation due to the shortage of fresh water to agriculture in many regions. For purpose of reducing the risks of using of saline water for irrigation, the mechanism of soil moisture and salinity distribution and transport should be well understood for developing optimum management strategies. In this paper, field experiments were carried out at Junggar Basin, China, to study the effects of drip irrigation water quality and drip tape arrangement on distribution of soil salinity and soil moisture. Six treatments were designed, including two drip tape arrangement modes and three irrigation water concentration levels (0.24, 4.68, and 7.42 dS m^-l). Results showed that, soil moisture content (SMC) directly beneath the drip tape in all treatments kept a relatively high value about 18% before boll opening stage; the SMC in the narrow strip in single tape arrangement (Ms) plot was obviously lower than that in the double tapes arrangement (Md) plot, indicating that less sufficient water was supplied under the same condition of irrigation depth, but there was no significant reduction in yield. Mulching had not significant influence on salt accumulation but the drip tape arrangement, under the same condition of irrigation water depth and quality, compared with Md, Ms reduced salt accumulation in root zone and brought about relatively high cotton yield.
基金supported by the Special Fund of Industrial (Agriculture) Research for Public Welfare of China(200903001)the Special Fund of Industrial (Marine) Research for Public Welfare of China (201105020-3 and 201105020-4)+2 种基金the Science and Technology Support Program of Jiangsu Province, China (BE2010313)the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-359)the National Natural Science Foundation of China (41171181)
文摘The aim of this paper was to research the spatio-temporal changes in total soluble salt content (TS) in a typical arid region of South Xinjiang, China, where the climate is arid and soil salinization happens easily. The total soluble salt content was interpreted by measurements made in the horizontal mode with EM38 and EM31. The electromagnetic induction (EM) surveys were made three times with the apparent soil electrical conductivity (ECa) measurements taken at 3 873 locations in Nov. 2008, 4 807 locations in Apr. 2009 and 6 324 locations in Nov. 2009, respectively. For interpreting the ECa measurements into total soluble salt content, calibtion sites were needed for EM survey of each time, e.g., 66 sites were selected in Nov. 2008 to measure ECa, and soils-core samples were taken by different depth layers of 0-10, 10-20 and 20-40 cm at the same time. On every time duplicate samples were taken at five sites to allevaite the local-scale variability, and soil temperatures in different layers through the profiles were also measured. Factors including TS, pH, water content, bulk density were analyzed by lab experiments. ECa calibration equations were obtained by linear regression analysis, which indicated that soil salinity was one primary concern to ECa with a determination coefficient of 0.792 in 0-10 cm layer, 0.711 in 10-20 cm layer and 0.544 in 20-40 cm layer, respectively. The maps of spatial distribution were predicted by Kriging interpolation, which showed that the high soil salinity was located near the drainage canal, which validated the trend effect caused by the irrigation canal and the drainage canal. And by comparing the soil salinity in different layers, the soluble salt accumulated to the top soil surface only in the area where the soil salinization was serious, and in the other areas, the soil salinity trended to increase from the top soil surface to 40 cm depth. Temporal changes showed that the soil salinity in November was higher than that in April, and the soil salinization trended to aggravate, especially in the top soil layer of 0-10 cm.
文摘Asia is the largest distribution area of salt-affected soils in the world. Very few countries in Asia couldescape from hazard of salinization. This paper deals with various salt-affected soils spreading in East Asiaand its neighboring regions (including China, Japan, Kampuchea, Democratic People’s Republic of Korea,Republic of Korea, Laos, Mongolia, Burma, Thailand and Vietnam). Principles of occurrence of salinization,and features of salt-affected soils in these regions have been studied in the present paper. Based on studieson types, features and distribution patterns of salt-affected soils, a salt-affected soil map of East Asia andits neighboring regions has been complied. Mechanism and manifestation of the salinization hazard on theregional agriculture and ecological environment, measures of preventing salinization hazard and exploitingsalt-affected soils in these regions are also discussed.
基金the National Key Basic Research Support Foundation (NKBRSF) of China (No. G1999011803),the National Natural Science Foundation of China (Nos. 40371058 and 40471018), the Jiangsu Provincial Society Deve-lopment Program of China (No. BS2003005), and the Institute of Geography and Limnology, Chinese Academy of Sciences(No. S250020).
文摘A laboratory salt-water dynamics experiment using unsaturated soils in packed silt loam and clay soil columns withdifferent soil texture profiles and groundwater levels under crops were conducted to study the changes of salt-waterdynamics induced by water uptake of crops and to propose the theoretical basis for the regulation and control of salt-water dynamics as well as to predict salinity levels. The HYDRUS 1D model was applied to simulate the one-dimensionalmovement of water and salt transport in the soil columns. The results showed that the salts mainly accumulated in theplow layer in the soil columns under crops. Soil water and salt both moved towards the plow layer due to soil waterabsorption by the crop root system. The salt contents in the column with lower groundwater were mostly greater thanthose with high groundwater. The water contents in the soil columns increased from top to the bottom due to plant rootwater uptake. The changes in groundwater level had little influence on water content of the root zone in the soil columnswith crop planting. Comparison between the simulated and the determined values showed that model simulation resultswere ideal, so it is practicable to do numerical simulation of soil salt and water transport by the HYDRUS 1D model.Furthermore, if the actual movement of salt and water in fields is to be described in detail, much work needs to be done.The most important thing is to refine the parameters and select precise boundary conditions.
基金the National Natural Science Foundation of China (Nos.40401059 and 40576040).
文摘During the past century,natural and human modifications of environmental systems have greatly accelerated coastal salt marsh deterioration and shoreline retreat in many regions worldwide. Field investigation,profile analysis,geographical information analysis,and remote sensing were employed in combination to study the effect of sediment on Spartina alterniflora salt marshes of the coast in Jiangsu Province,East China. The results indicated that the propagation of Spartina alterniflora salt marshes was closely related to regional sediment conditions,especially the supply of fine-grained materials. Additionally,because of the dense and high grass in Spartina alterniflora salt marshes,wave energy and tidal currents were baffled and weaker than those of the adjacent,unvegetated mud flats. Fine sediment was hardly resuspended under the low energy conditions in the Spartina alterniflora salt marshes.
基金support of the Special Fund for Public-Welfare Industrial (Agriculture) Research of China (200903001)the National Natural Science Foundation of China (41171181,41101199)+1 种基金the Key Technology R&D Program of Jiangsu Province, China (BE2010313)the Prospective Project of Production Education Research Cooperation of Jiangsu Province, China (BY2010013)
文摘Land use practice significantly affects soil properties. Soil is a major sink for atmospheric carbon, and soil organic carbon (SOC) is considered as an essential indicator of soil quality. The objective of this study was to assess the effects of N and P applied to Suaeda salsa on biomass production, SOC concentration, labile organic carbon (LOC) concentration, SOC pool and carbon management index (CMI) as well as the effect of the land use practice on soil quality of coastal tidal lands in east coastal region of China. The study provided relevant references for coastal exploitation, tidal land management and related study in other countries and regions. The field experiment was laid out in a randomized complete block design, consisting of four N-fertilization rates (0 (NO), 60 (N1), 120 (N2) and 180 kg ha-1 (N3)), three P-fertilization rates (0 (P0), 70 (P1) and 105 kg ha-~ (P2)) and bare land without vegetation. N and P applied to S. salsa on coastal tidal lands significantly affected biomass production (above-ground biomass and roots), bulk density (Pb), available N and P, SOC, LOC, SOC pool and CMI. Using statistical analysis, significantly interactions in N and P were observed for biomass production and the dominant factor for S. salsa production was N in continuous 2-yr experiments. There were no significant interactions between N and P for SOC concentration, LOC concentration and SOC pool. However, significant interaction was obtained for CMI at the 0-20 cm depth and N played a dominant role in the variation of CMI. There were significant improvements for soil measured attributes and parameters, which suggested that increasing the rates of N and P significantly decreased Pb at the 0-20 cm depth and increased available N and P, SOC, LOC, SOC pool as well as CMI at both the 0-20 and 20-40 cm depth, respectively. By correlation analysis, there were significantly positive correlations between biomass (above- ground biomass and roots) and SOC as well as LOC in 2010 and 2011 across all soil depth, respectively. The treatment with N at 180 kg ha-~ and P at 105 kg ha-1 was superior to the other treatments. The results from the 2-yr continuous experiments indicated that, in short-term, there were a few accumulation of SOC and LOC concentrations by means of N and P application to S. salsa, whereas in the long run, S. salsa with N and P application was recommended for coastal tidal lands because of its great potential of carbon sequestration, improvements of soil nutrition status and promotion of soil quality.