目的建立拉曼光谱法快速、准确、无损地检测猪肉脯样品中掺假鸡肉的方法。方法制备33份猪肉中掺入不同比例鸡肉的肉脯样品,采集拉曼光谱数据,分别采用标准正态变换、多元散射校正、卷积平滑、归一化、一阶导数等5种不同预处理方法,对原...目的建立拉曼光谱法快速、准确、无损地检测猪肉脯样品中掺假鸡肉的方法。方法制备33份猪肉中掺入不同比例鸡肉的肉脯样品,采集拉曼光谱数据,分别采用标准正态变换、多元散射校正、卷积平滑、归一化、一阶导数等5种不同预处理方法,对原始光谱数据进行预处理,采用连续投影算法、竞争性自适应重加权算法及随机蛙跳算法对光谱数据进行特征波长筛选,建立偏最小二乘法(partial least squares,PLS)模型对猪肉脯进行定性定量判别。结果拉曼光谱数据经过多元散射校正处理的效果最佳,竞争性自适应重加权算法竞筛选效果更佳,构建猪肉脯中猪肉含量的PLS定量模型,其预测集决定系数和预测均方根误差分别为0.9762、7.2998。建立的PLS判别模型的校正集和预测集总判别正确率分别为100.00%和98.33%。结论拉曼光谱分析技术可有效用于定性鉴别猪肉脯是否掺伪及定量分析猪肉肉脯中掺入鸡肉的比例,为肉脯掺假的快速无破坏性检测的应用提供支持。展开更多
Environmental changes significantly alter the structure,diversity and activity of soil microbial communities during spring freezing-thawing period,leading to changes in the soil microbial nitrogen cycle.Changes in N_(...Environmental changes significantly alter the structure,diversity and activity of soil microbial communities during spring freezing-thawing period,leading to changes in the soil microbial nitrogen cycle.Changes in N_(2)O fluxes after land use conversion from primary forest to secondary forest,Korean pine plantation and cropland in northeast China have not been quantified.Field experiments were conducted to measure soil N_(2)O fluxes in a primary forest,two secondary forests,a Korean pine plantation,and one maize field in a temperate region in northeast China from 2017-03-06 to 2017-05-28.During the experimental period,the soil was exclusively a nitrogen source for all land uses.We found that N_(2)O emissions ranged from 15.63 to 68.74μg m^(-2) h^(-1),and cumulative N_(2)O emissions ranged from 0.33 to 2.10 kg ha^(-1) during the period.Cumulative N_(2)O emissions from the maize field were significantly higher than that from primary forest,Korean pine plantation,hardwood forest,and Betula platyphylla forest by 262.1% to 536.4%.Compared with other ecosystems in similar studies,the N_(2)O emission rates of all ecosystem types in this study were low during the spring thaw period.Stepwise multiple linear regression indicated that there were significant correlations between N_(2)O emissions and environmental factors(air temperature and soil temperature,soil water content,soil p H,NH_(4)^(+)-N,NO_(3)^(-)-N,and soil organic carbon).The results showed that conversion of land use from primary forest to hardwood forest,Korean pine plantation or maize field greatly increased soil N_(2)O emissions during spring freezing-thawing period,and N_(2)O emissions from primary forest were almost the same as those from Betula platyphylla forest.展开更多
文摘目的建立拉曼光谱法快速、准确、无损地检测猪肉脯样品中掺假鸡肉的方法。方法制备33份猪肉中掺入不同比例鸡肉的肉脯样品,采集拉曼光谱数据,分别采用标准正态变换、多元散射校正、卷积平滑、归一化、一阶导数等5种不同预处理方法,对原始光谱数据进行预处理,采用连续投影算法、竞争性自适应重加权算法及随机蛙跳算法对光谱数据进行特征波长筛选,建立偏最小二乘法(partial least squares,PLS)模型对猪肉脯进行定性定量判别。结果拉曼光谱数据经过多元散射校正处理的效果最佳,竞争性自适应重加权算法竞筛选效果更佳,构建猪肉脯中猪肉含量的PLS定量模型,其预测集决定系数和预测均方根误差分别为0.9762、7.2998。建立的PLS判别模型的校正集和预测集总判别正确率分别为100.00%和98.33%。结论拉曼光谱分析技术可有效用于定性鉴别猪肉脯是否掺伪及定量分析猪肉肉脯中掺入鸡肉的比例,为肉脯掺假的快速无破坏性检测的应用提供支持。
基金financial assistance and support from the Hubei Key Laboratory of Construction and Management in Hydropower Engineering,China Three Gorges University(No.2020KSD09)the National Key Research and Development Program of China(2017YFC0504102)+1 种基金the National Natural Science Foundation of China(51979147)the Ministry of Finance,the Ministry of Industry and Information Technology,and the Ministry of Science and Technology for support of the High Tech Zone in Yichang in creating a special project for highly talented research(No.B19-004)。
文摘Environmental changes significantly alter the structure,diversity and activity of soil microbial communities during spring freezing-thawing period,leading to changes in the soil microbial nitrogen cycle.Changes in N_(2)O fluxes after land use conversion from primary forest to secondary forest,Korean pine plantation and cropland in northeast China have not been quantified.Field experiments were conducted to measure soil N_(2)O fluxes in a primary forest,two secondary forests,a Korean pine plantation,and one maize field in a temperate region in northeast China from 2017-03-06 to 2017-05-28.During the experimental period,the soil was exclusively a nitrogen source for all land uses.We found that N_(2)O emissions ranged from 15.63 to 68.74μg m^(-2) h^(-1),and cumulative N_(2)O emissions ranged from 0.33 to 2.10 kg ha^(-1) during the period.Cumulative N_(2)O emissions from the maize field were significantly higher than that from primary forest,Korean pine plantation,hardwood forest,and Betula platyphylla forest by 262.1% to 536.4%.Compared with other ecosystems in similar studies,the N_(2)O emission rates of all ecosystem types in this study were low during the spring thaw period.Stepwise multiple linear regression indicated that there were significant correlations between N_(2)O emissions and environmental factors(air temperature and soil temperature,soil water content,soil p H,NH_(4)^(+)-N,NO_(3)^(-)-N,and soil organic carbon).The results showed that conversion of land use from primary forest to hardwood forest,Korean pine plantation or maize field greatly increased soil N_(2)O emissions during spring freezing-thawing period,and N_(2)O emissions from primary forest were almost the same as those from Betula platyphylla forest.