期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Perfectly Matched Layer for an Elastic Parabolic Equation Model in Ocean Acoustics 被引量:3
1
作者 XU Chuanxiu ZHANG Haigang +3 位作者 PIAO Shengchun yang shi’e SUN Sipeng TANG Jun 《Journal of Ocean University of China》 SCIE CAS CSCD 2017年第1期57-64,共8页
The perfectly matched layer(PML) is an effective technique for truncating unbounded domains with minimal spurious reflections. A fluid parabolic equation(PE) model applying PML technique was previously used to analyze... The perfectly matched layer(PML) is an effective technique for truncating unbounded domains with minimal spurious reflections. A fluid parabolic equation(PE) model applying PML technique was previously used to analyze the sound propagation problem in a range-dependent waveguide(Lu and Zhu, 2007). However, Lu and Zhu only considered a standard fluid PE to demonstrate the capability of the PML and did not take improved one-way models into consideration. They applied a [1/1] Padé approximant to the parabolic equation. The higher-order PEs are more accurate than standard ones when a very large angle propagation is considered. As for range-dependent problems, the techniques to handle the vertical interface between adjacent regions are mainly energy conserving and single-scattering. In this paper, the PML technique is generalized to the higher order elastic PE, as is to the higher order fluid PE. The correction of energy conserving is used in range-dependent waveguides. Simulation is made in both acoustic cases and seismo-acoustic cases. Range-independent and range-dependent waveguides are both adopted to test the accuracy and efficiency of this method. The numerical results illustrate that a PML is much more effective than an artificial absorbing layer(ABL) both in acoustic and seismo-acoustic sound propagation modeling. 展开更多
关键词 ELASTIC PARABOLIC EQUATION perfectly matched LAYER artificial absorbing LAYER
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部