The Fenglin and Fengcong landform units are considered to be an important representation for defining the degree of development of Karst landforms. However, these terrain features have been proven difficult to delinea...The Fenglin and Fengcong landform units are considered to be an important representation for defining the degree of development of Karst landforms. However, these terrain features have been proven difficult to delineate and extract automatically because of their complex morphology. In this paper, a new method for identifying the Fenglin and Fengcong landform units is proposed. This method consists of two steps:(1) terrain openness calculation and(2) toe line extraction. The proposed method is applied and validated in the Karst case area of Guilin by using ASTER GDEM with one arc-second resolution. The openness of both the positive and negative terrain and a threshold were used to extract toe lines for segmenting depressions and pinnacles in Fenglin and Fengcong landforms. A comparison between the extracted Fenglin and Fengcong landform units and their real units from high resolution images wascarried out to evaluate the capability of the proposed method. Results show the proposed method can effectively extract the Fenglin and Fengcong landform units, and has an overall accuracy of 93.28%. The proposed method is simple and easy to implement and is expected to play an important role in the automatic extraction of similar landform units in the Karst area.展开更多
Ephemeral gullies,which are widely developed worldwide and threaten farmlands,have aroused a growing concern.Identifying and mapping gullies are generally considered prerequisites of gully erosion assessment.However,e...Ephemeral gullies,which are widely developed worldwide and threaten farmlands,have aroused a growing concern.Identifying and mapping gullies are generally considered prerequisites of gully erosion assessment.However,ephemeral gully mapping remains a challenge.In this study,we proposed a flow-directional detection for identifying ephemeral gullies from high-resolution images and digital elevation models(DEMs).Ephemeral gullies exhibit clear linear features in high-resolution images.An edge detection operator was initially used to identify linear features from high-resolution images.Then,according to gully erosion mechanism,the flow-directional detection was designed.Edge images obtained from edge detection and flow directions obtained from DEMs were used to implement the flow-directional detection that detects ephemeral gullies along the flow direction.Results from ten study areas in the Loess Plateau of China showed that ranges of precision,recall,and Fmeasure are 6 o.66%-90.47%,65.74%-94.98%,and63.10%-91.93%,respectively.The proposed method is flexible and can be used with various images and DEMs.However,analysis of the effect of DEM resolution and accuracy showed that DEM resolution only demonstrates a minor effect on the detection results.Conversely,DEM accuracy influences the detection result and is more important than the DEM resolution.The worse the vertical accuracy of DEM,the lower the performance of the flow-directional detection will be.This work is beneficial to research related to monitoring gully erosion and assessing soil loss.展开更多
基金supported by the National Natural Science Foundation of China (NO. 41601411, 41671389, 41571398, 41701449) Open Fund of State Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University (Grant No. 17S02) A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions-PAPD (Grant No. 164320H101)
文摘The Fenglin and Fengcong landform units are considered to be an important representation for defining the degree of development of Karst landforms. However, these terrain features have been proven difficult to delineate and extract automatically because of their complex morphology. In this paper, a new method for identifying the Fenglin and Fengcong landform units is proposed. This method consists of two steps:(1) terrain openness calculation and(2) toe line extraction. The proposed method is applied and validated in the Karst case area of Guilin by using ASTER GDEM with one arc-second resolution. The openness of both the positive and negative terrain and a threshold were used to extract toe lines for segmenting depressions and pinnacles in Fenglin and Fengcong landforms. A comparison between the extracted Fenglin and Fengcong landform units and their real units from high resolution images wascarried out to evaluate the capability of the proposed method. Results show the proposed method can effectively extract the Fenglin and Fengcong landform units, and has an overall accuracy of 93.28%. The proposed method is simple and easy to implement and is expected to play an important role in the automatic extraction of similar landform units in the Karst area.
基金funded by the National Natural Science Foundation of China (Grant No. 41930102, 41971333, 41771415, and 41701449)the Priority Academic Program Development of Jiangsu Higher Education Institutions (Grant No. 164320H116)the Open Fund of Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution (Grant No. KLSPWSEPA04)。
文摘Ephemeral gullies,which are widely developed worldwide and threaten farmlands,have aroused a growing concern.Identifying and mapping gullies are generally considered prerequisites of gully erosion assessment.However,ephemeral gully mapping remains a challenge.In this study,we proposed a flow-directional detection for identifying ephemeral gullies from high-resolution images and digital elevation models(DEMs).Ephemeral gullies exhibit clear linear features in high-resolution images.An edge detection operator was initially used to identify linear features from high-resolution images.Then,according to gully erosion mechanism,the flow-directional detection was designed.Edge images obtained from edge detection and flow directions obtained from DEMs were used to implement the flow-directional detection that detects ephemeral gullies along the flow direction.Results from ten study areas in the Loess Plateau of China showed that ranges of precision,recall,and Fmeasure are 6 o.66%-90.47%,65.74%-94.98%,and63.10%-91.93%,respectively.The proposed method is flexible and can be used with various images and DEMs.However,analysis of the effect of DEM resolution and accuracy showed that DEM resolution only demonstrates a minor effect on the detection results.Conversely,DEM accuracy influences the detection result and is more important than the DEM resolution.The worse the vertical accuracy of DEM,the lower the performance of the flow-directional detection will be.This work is beneficial to research related to monitoring gully erosion and assessing soil loss.