滴灌技术结合节水灌溉制度可显著提高作物水分利用效率,但针对滴灌条件下冬小麦节水灌溉制度的优化研究相对较少,利用作物模型优化节水灌溉制度可以弥补田间试验的不足,对于作物精确灌溉具有重要的指导意义。本研究利用胶东冬小麦滴灌...滴灌技术结合节水灌溉制度可显著提高作物水分利用效率,但针对滴灌条件下冬小麦节水灌溉制度的优化研究相对较少,利用作物模型优化节水灌溉制度可以弥补田间试验的不足,对于作物精确灌溉具有重要的指导意义。本研究利用胶东冬小麦滴灌节水试验数据(2016—2019年)评价了根区水质模型(RZWQM-CERES)的适应性,并模拟评价了不同节水滴灌制度对冬小麦产量和水分利用效率的影响,以筛选最佳节水滴灌制度。结果表明RZWQM-CERES可以较好地模拟土壤水分、冬小麦生长和产量对不同滴灌处理和季节的响应,其中模拟0~90 cm土壤贮水量的均方根误差(RMSE)为22.7~32.3 mm、相对均方根误差(NRMSE)为11.9%~16.3%、决定系数(R2)为0.52~0.69,模拟收获期生物量的RMSE为1184~1904 kg hm-2、NRMSE为9.9%~16.8%、R2为0.67,模拟产量的RMSE为361~491 kg hm^(–2)、NRMSE为5.7%~7.8%、R2为0.75。长期模拟结果表明该地区冬小麦需水关键期为孕穗期(丰水年和平水年)或拔节期(枯水年)。针对不同降水年型冬小麦产量和水分利用效率对灌溉量的响应差异,筛选滴灌条件下冬小麦最佳灌溉制度为:丰水年在拔节期和开花期各灌水45mm;平水年(或枯水年)在拔节期、孕穗期及开花期各灌水35mm(或45 mm)。本研究结果扩展了RZWQM-CERES优化冬小麦滴灌制度的应用潜力,为实施冬小麦精确灌溉提供了重要的技术支持。展开更多
The spatial and temporal deformation patterns and deformation control indicators of highfill foundations directly affect the design,construction and operational safety of high-fill projects.In situ monitoring can comp...The spatial and temporal deformation patterns and deformation control indicators of highfill foundations directly affect the design,construction and operational safety of high-fill projects.In situ monitoring can comprehensively reflect the deformation of high-fill during and after construction.In this paper,we have first designed and installed an integrated wireless remote monitoring system for high-fill to achieve real-time dynamic monitoring of settlement,pore water pressure and soil pressure of the fill foundation.Based on the monitoring results of nearly one year of the construction period and two years after construction,it was found that the deformation amount and deformation rate of the high-fill foundation showed a non-linear growth relationship with the filling rate and filling height.The settlement deformation of the high-fill foundation during the loading period was mainly dominated by the original foundation soil,accounting for 54.4%of the total settlement on average;the settlement deformation during the post-construction period was mainly dominated by the filling body,accounting for 77.04%of the total settlement on average,and the settlement deformation during the post-construction period mainly occurred in the first year after construction.The analysis of the deformation mechanism suggests that the deformation of the filling body is dominated by exhaust consolidation during the loading period and drainage consolidation during the post-construction period;the deformation of the original foundation soil is dominated by drainage consolidation during the loading period and drainage consolidation develops slowly during the post-construction period.It is recommended that the original foundation should be reinforced before the large area filling construction,and that the filling rate should be strictly controlled during construction.The research results can provide a scientific basis for deformation calculation and stability assessment of high-fill foundations.展开更多
Co-signaling molecules are molecules whose ligands on the surface of cells interact with receptors on the surface of T cells to convey stimulatory or inhibitory signals to regulate immune responses.Co-signaling molecu...Co-signaling molecules are molecules whose ligands on the surface of cells interact with receptors on the surface of T cells to convey stimulatory or inhibitory signals to regulate immune responses.Co-signaling molecules play an important role in tumor and autoimmune diseases.Lately,studies have shown that co-signaling molecules are also involved in the regulation of maternal-fetal immune tolerance,and abnormalities of co-signaling molecules may lead to the imbalance of maternal-fetal immune tolerance,resulting in recurrent abortion,eclampsia and other pregnancy complications.ICOSL/ICOS is a ligand and receptor of costimulatory signals,which regulates maternal and fetal immune tolerance by participating in T cell differentiation and Th1 and Th2 cytokine secretion.Therefore,this article reviews the structure of ICOSL/ICOS,the distribution of ICOSL/ICOS at the maternal-fetal interface and its immune regulation during pregnancy,in order to provide new ideas for the future study of immunotherapy of pregnancy complications caused by abnormal co-signaling molecules.展开更多
文摘滴灌技术结合节水灌溉制度可显著提高作物水分利用效率,但针对滴灌条件下冬小麦节水灌溉制度的优化研究相对较少,利用作物模型优化节水灌溉制度可以弥补田间试验的不足,对于作物精确灌溉具有重要的指导意义。本研究利用胶东冬小麦滴灌节水试验数据(2016—2019年)评价了根区水质模型(RZWQM-CERES)的适应性,并模拟评价了不同节水滴灌制度对冬小麦产量和水分利用效率的影响,以筛选最佳节水滴灌制度。结果表明RZWQM-CERES可以较好地模拟土壤水分、冬小麦生长和产量对不同滴灌处理和季节的响应,其中模拟0~90 cm土壤贮水量的均方根误差(RMSE)为22.7~32.3 mm、相对均方根误差(NRMSE)为11.9%~16.3%、决定系数(R2)为0.52~0.69,模拟收获期生物量的RMSE为1184~1904 kg hm-2、NRMSE为9.9%~16.8%、R2为0.67,模拟产量的RMSE为361~491 kg hm^(–2)、NRMSE为5.7%~7.8%、R2为0.75。长期模拟结果表明该地区冬小麦需水关键期为孕穗期(丰水年和平水年)或拔节期(枯水年)。针对不同降水年型冬小麦产量和水分利用效率对灌溉量的响应差异,筛选滴灌条件下冬小麦最佳灌溉制度为:丰水年在拔节期和开花期各灌水45mm;平水年(或枯水年)在拔节期、孕穗期及开花期各灌水35mm(或45 mm)。本研究结果扩展了RZWQM-CERES优化冬小麦滴灌制度的应用潜力,为实施冬小麦精确灌溉提供了重要的技术支持。
基金supported by the Youth Science and Technology Fund Program in Gansu Province(20JR5RA434 and 20JR10RA200)National Natural Science Foundation of China(52168051)+1 种基金Gansu Province University Innovation Fund Project(2020A031)Gansu Provincial Science and Technology Plan Fund Project(22CX8GA112)。
文摘The spatial and temporal deformation patterns and deformation control indicators of highfill foundations directly affect the design,construction and operational safety of high-fill projects.In situ monitoring can comprehensively reflect the deformation of high-fill during and after construction.In this paper,we have first designed and installed an integrated wireless remote monitoring system for high-fill to achieve real-time dynamic monitoring of settlement,pore water pressure and soil pressure of the fill foundation.Based on the monitoring results of nearly one year of the construction period and two years after construction,it was found that the deformation amount and deformation rate of the high-fill foundation showed a non-linear growth relationship with the filling rate and filling height.The settlement deformation of the high-fill foundation during the loading period was mainly dominated by the original foundation soil,accounting for 54.4%of the total settlement on average;the settlement deformation during the post-construction period was mainly dominated by the filling body,accounting for 77.04%of the total settlement on average,and the settlement deformation during the post-construction period mainly occurred in the first year after construction.The analysis of the deformation mechanism suggests that the deformation of the filling body is dominated by exhaust consolidation during the loading period and drainage consolidation during the post-construction period;the deformation of the original foundation soil is dominated by drainage consolidation during the loading period and drainage consolidation develops slowly during the post-construction period.It is recommended that the original foundation should be reinforced before the large area filling construction,and that the filling rate should be strictly controlled during construction.The research results can provide a scientific basis for deformation calculation and stability assessment of high-fill foundations.
基金National Natural Science Foundation of China(No.81960283,82072880)。
文摘Co-signaling molecules are molecules whose ligands on the surface of cells interact with receptors on the surface of T cells to convey stimulatory or inhibitory signals to regulate immune responses.Co-signaling molecules play an important role in tumor and autoimmune diseases.Lately,studies have shown that co-signaling molecules are also involved in the regulation of maternal-fetal immune tolerance,and abnormalities of co-signaling molecules may lead to the imbalance of maternal-fetal immune tolerance,resulting in recurrent abortion,eclampsia and other pregnancy complications.ICOSL/ICOS is a ligand and receptor of costimulatory signals,which regulates maternal and fetal immune tolerance by participating in T cell differentiation and Th1 and Th2 cytokine secretion.Therefore,this article reviews the structure of ICOSL/ICOS,the distribution of ICOSL/ICOS at the maternal-fetal interface and its immune regulation during pregnancy,in order to provide new ideas for the future study of immunotherapy of pregnancy complications caused by abnormal co-signaling molecules.