Objective: To evaluate the efficacy and safety of EGFR-TKI with the radiotherapy in EGFR mutant metastatic NSCLC. Methods: Retrospective analysis of 72 patients with stage IV lung cancer with EGFR-sensitive mutation. ...Objective: To evaluate the efficacy and safety of EGFR-TKI with the radiotherapy in EGFR mutant metastatic NSCLC. Methods: Retrospective analysis of 72 patients with stage IV lung cancer with EGFR-sensitive mutation. Patients in the A group were treated with the first-generation EGFR-TKI (Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor) combined with radiotherapy for primary tumors (34 cases). The B group was treated with the first-generation EGFR-TKI alone until the disease progressed (38 cases). PFS, OS, pulmonary infection and hematological toxicity during treatment were commented in both groups. Results: The objective remission rate was 47.1% (16/34) in the A group and 21.1% (8/38) in the B group. There was a significant difference between the two groups. There was no significant difference in hematological toxicity between the A group and the B group. There were 10 patients (29.4%) with degree II pulmonary infection in the A group and 3 patients (7.9%) in the B group. The difference between the two groups was statistically significant, suggesting that the incidence of pneumonia in the A group was higher than that in the B group. The median PFS (Progression-Free Survival)) and OS (Overall Survival) of the A group were significantly longer than those of the B group (16.5 months vs 9 months) and the median OS (36 months vs 19 months). The PFS and OS in the A group were significantly longer than those in the B group. Conclusion: EGFR-TKI combined with primary radiotherapy can significantly prolong the drug resistance time of EGFR mutant metastatic NSCLC.展开更多
Parkinson’s disease is a neurodegenerative disease characterized by motor and gastrointestinal dysfunction.Gastrointestinal dysfunction can precede the onset of motor symptoms by several years.Gut microbiota dysbiosi...Parkinson’s disease is a neurodegenerative disease characterized by motor and gastrointestinal dysfunction.Gastrointestinal dysfunction can precede the onset of motor symptoms by several years.Gut microbiota dysbiosis is involved in the pathogenesis of Parkinson’s disease,whether it plays a causal role in motor dysfunction,and the mechanism underlying this potential effect,remain unknown.CCAAT/enhancer binding proteinβ/asparagine endopeptidase(C/EBPβ/AEP)signaling,activated by bacterial endotoxin,can promoteα-synuclein transcription,thereby contributing to Parkinson’s disease pathology.In this study,we aimed to investigate the role of the gut microbiota in C/EBPβ/AEP signaling,α-synuclein-related pathology,and motor symptoms using a rotenone-induced mouse model of Parkinson’s disease combined with antibiotic-induced microbiome depletion and fecal microbiota transplantation.We found that rotenone administration resulted in gut microbiota dysbiosis and perturbation of the intestinal barrier,as well as activation of the C/EBP/AEP pathway,α-synuclein aggregation,and tyrosine hydroxylase-positive neuron loss in the substantia nigra in mice with motor deficits.However,treatment with rotenone did not have any of these adverse effects in mice whose gut microbiota was depleted by pretreatment with antibiotics.Importantly,we found that transplanting gut microbiota derived from mice treated with rotenone induced motor deficits,intestinal inflammation,and endotoxemia.Transplantation of fecal microbiota from healthy control mice alleviated rotenone-induced motor deficits,intestinal inflammation,endotoxemia,and intestinal barrier impairment.These results highlight the vital role that gut microbiota dysbiosis plays in inducing motor deficits,C/EBPβ/AEP signaling activation,andα-synuclein-related pathology in a rotenone-induced mouse model of Parkinson’s disease.Additionally,our findings suggest that supplementing with healthy microbiota may be a safe and effective treatment that could help ameliorate the progression of motor deficits in patients with Parkinson’s disease.展开更多
The Moon provides a unique environment for investigating nearby astrophysical events such as supernovae.Lunar samples retain valuable information from these events,via detectable long-lived“fingerprint”radionuclides...The Moon provides a unique environment for investigating nearby astrophysical events such as supernovae.Lunar samples retain valuable information from these events,via detectable long-lived“fingerprint”radionuclides such as^(60)Fe.In this work,we stepped up the development of an accelerator mass spectrometry(AMS)method for detecting^(60)Fe using the HI-13tandem accelerator at the China Institute of Atomic Energy(CIAE).Since interferences could not be sufficiently removed solely with the existing magnetic systems of the tandem accelerator and the following Q3D magnetic spectrograph,a Wien filter with a maximum voltage of±60 kV and a maximum magnetic field of 0.3 T was installed after the accelerator magnetic systems to lower the detection background for the low abundance nuclide^(60)Fe.A 1μm thick Si_(3)N_(4) foil was installed in front of the Q3D as an energy degrader.For particle detection,a multi-anode gas ionization chamber was mounted at the center of the focal plane of the spectrograph.Finally,an^(60)Fe sample with an abundance of 1.125×10^(-10)was used to test the new AMS system.These results indicate that^(60)Fe can be clearly distinguished from the isobar^(60)Ni.The sensitivity was assessed to be better than 4.3×10^(-14)based on blank sample measurements lasting 5.8 h,and the sensitivity could,in principle,be expected to be approximately 2.5×10^(-15)when the data were accumulated for 100 h,which is feasible for future lunar sample measurements because the main contaminants were sufficiently separated.展开更多
Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring ...Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring binder-free electrocatalytic integratedelectrodes (IEs) as an alternative to conventional powder-based electrode preparation methods,for the former is highly desirable to improve the catalytic activity and long-term stability for large-scale applications of electrocatalysts.Herein,we demonstrate a laser-inducedhydrothermal reaction (LIHR) technique to grow NiMoO4nanosheets on nickel foam,which is then calcined under H2/Ar mixed gases to prepare the IE IE-NiMo-LR.This electrode exhibits superior hydrogen evolution reaction performance,requiring overpotentials of 59,116 and143 mV to achieve current densities of 100,500 and 1000 mA·cm-2.During the 350 h chronopotentiometry test at current densities of 100 and 500 m A·cm-2,the overpotentialremains essentially unchanged.In addition,NiFe-layered double hydroxide grown on Ni foam is also fabricated with the same LIHR method and coupled with IE-NiMo-IR to achieve water splitting.This combination exhibits excellent durability under industrial current density.The energy consumption and production efficiency of the LIHR method are systematicallycompared with the conventional hydrothermal method.The LIHR method significantly improves the production rate by over 19 times,while consuming only 27.78%of the total energy required by conventional hydrothermal methods to achieve the same production.展开更多
Broody behavior is regulated by hypothalamic prolactin secretion,which seriously affects egg production in poulty production.Numerous studies have provided evidence that animal behavior is governed by dynamic bidirect...Broody behavior is regulated by hypothalamic prolactin secretion,which seriously affects egg production in poulty production.Numerous studies have provided evidence that animal behavior is governed by dynamic bidirectional communication between specific gut bacteria and their host via the brain-gut-microbiome axis.However,little research focused on how the gut microbiota influence broody behavior in poultry.In this study,Zhedong white geese in laying and brooding phases were selected.Ten differentially abundant bacteria in cecum were detected between brooding and laying geese through metagenomic analyses and 16S rRNA sequencing(P<0.05),and Bacteroides fragilis was specifically identified as a key driver species in the brooding geese.Moverover,the serum metabolites were quantified,and the 313 differentially abundant metabolites were found between the two groups of different physiological geese.They were primarily enriched in the tryptophan metabolism pathways.Pearson correlation analyses revealed there was a significant positive correlation between B.fragilis abundance and the context of 11 tryptophan metabolism-related metabolites(such as serotonin,etc.)in broody geese,which hinted that those tryptophan metabolites might be produced or driven by B.fragilis.Finally,the serum hormone levels were also measured.We found there was a positive correlation between B.fragilis abundance and content of serotonin.Besides,prolactin secreted by the pituitary gland was greater in brooding geese than that in laying geese,which was also highly correlated with B.fragilis abundance.This result implied that B.fragilis could promote the secretion of prolactin by the pituitary gland.Together,the current study findings provided the information on gut microbiota influencing broody behavior,B.fragilis produced or driven more serum serotonin,and stimulated the pituitary gland to secret more prolactin,which potentially offered a new enlightenment for the intervention of broody behavior in poultry.展开更多
The combination of the dipping effect and hydromechanical(H-M)coupling effect can easily lead to water inrush disasters in water-rich roadways with different dip angles in coal mines.Therefore,H-M coupling tests of be...The combination of the dipping effect and hydromechanical(H-M)coupling effect can easily lead to water inrush disasters in water-rich roadways with different dip angles in coal mines.Therefore,H-M coupling tests of bedded sandstones under identical osmotic pressure and various confining pressures were conducted.Then,the evolution curves of stress-strain,permeability and damage,macro-and mesoscopic failure characteristics were obtained.Subsequently,the mechanical behaviour was characterized,and finally the failure mechanism was revealed.The results showed that:(1)The failure of the sandstone with the bedding angle of 45°or 60°was the structure-dominant type,while that with the bedding angle of 0°,30°or 90°was the force-dominant type.(2)When the bedding angle was in the range of(0°,30°)or(45°,90°),the confining pressure played a dominant role in influencing the peak strength.However,withinβ∈(30°,45°),the bedding effect played a dominant role in the peak strength.(3)With the increase in bedding angle,the cohesion increased first,then decreased and finally increased,while the internal friction angle was the opposite.(4)When the bedding angle was 0°or 30°,the“water wedging”effect and the“bedding buckling”effect would lead to the forking or converging shear failure.When the bedding angle was 45°or 60°,the sliding friction effect would lead to the shear slipping failure.When the bedding angle was 90°,the combination of the“bedding buckling”effect and shear effect would lead to the mixed tension-shear failure.The above conclusions obtained are helpful for the prevention of water inrush disasters in water-rich roadways with different dips in coal mines.展开更多
Microwave reflectometry is a powerful diagnostic that can measure the density profile and localized turbulence with high spatial and temporal resolution and will be used in ITER,so understanding the influence of plasm...Microwave reflectometry is a powerful diagnostic that can measure the density profile and localized turbulence with high spatial and temporal resolution and will be used in ITER,so understanding the influence of plasma perturbations on the reflect signal is important.The characteristics of the reflect signal from profile reflectometry,the time-of-flight(TOF)signal associated with the MHD instabilities,are investigated in EAST.Using a 1D full-wave simulation code by the Finite-DifferenceTime-Domain(FDTD)method,it is well validated that the local density flattening could induce the discontinuity of the simulated TOF signal and an obvious change of reflect amplitude.Experimental TOF signals under different types of MHD instabilities(sawtooth,sawtooth precursors and tearing mode)are studied in detail and show agreement with the simulation.Two new improved algorithms for detecting and localizing the radial positions of the low-order rational surface,the cross-correlation and gradient threshold(CGT)method and the 2D convolutional neural network approach(CNN)are presented for the first time.It is concluded that TOF signal analysis from profile reflectometry can provide a straightforward and localized measurement of the plasma perturbation from the edge to the core simultaneously and may be a complement or correction to the q-profile control,which will be beneficial for the advanced tokamak operation.展开更多
The study considers gas compression properties,gas slippage,back pressure(BP),phase transition(PT),well depth,and differences in gas-liquid physical properties.A new temperature model for multiphase flow is proposed b...The study considers gas compression properties,gas slippage,back pressure(BP),phase transition(PT),well depth,and differences in gas-liquid physical properties.A new temperature model for multiphase flow is proposed by considering phase transition in the drilling process.The mathematical model of multiphase flow is solved using the finite difference method with annulus mesh division for grid nodes,and a module for multiphase flow calculation and analysis is developed.Numerical results indicate that the temperature varies along the annulus with the variation of gas influx at the bottom of the well.During the process of controlled pressure drilling,as gas slips along the annulus to the wellhead,its volume continuously expands,leading to an increase in the gas content within the annulus,and consequently,an increase in the pressure drop caused by gas slippage.The temperature increases with the increase in BP and decreases in gas influx rate and wellbore diameter.During gas influx,the thermal conductivity coefficient for the gas-drilling mud two phases is significantly weakened,resulting in a considerable change in temperature along the annulus.In the context of MPD,the method of slightly changing the temperature along the annulus by controlling the back pressure is feasible.展开更多
Glycogen metabolism plays a key role in the development of hepatoellular carcinoma(HCC),but the function of glycogen metabolism genes in the tumor microenvironment(TME)is still to be elucidated.Single cell RNA-seq dat...Glycogen metabolism plays a key role in the development of hepatoellular carcinoma(HCC),but the function of glycogen metabolism genes in the tumor microenvironment(TME)is still to be elucidated.Single cell RNA-seq data were obtained from ten HCC tumor samples totaling 64,545 cells and 65 glycogen metabolism genes were analyzed bya nonnegative matrix factorization(NMF).The prognosis and immune response of new glycogen TME cell dusters were predicted by using HCC and immunotherapy cohorts from public databases.HOC single cell analysis was divided into fibroblasts,NT T cells,macrophages,endothelial clls,and B cells,which were separately divided into new cell clusters by glycogen metabolism gene annotation.Pseudo temporal trajectory analysis demonstrated the temporal differentiation trajectory of different glycogen subtype cell dusters.Cellular communication analysis revealed extensive interactions between endothelial cells with glycogen metabolizing TME cell.related subtypes and diferent glycogen subtype cell clusters.SCENIC analysis of transcription factors upstream of TME cell clusters with different glycogen metabolism.In addition,TME cell dusters of glycogen metabolism were found to be enriched in expression in CAF subtypes,CD8 depleted,M1,and M2 types.Bulk seq analysis showed the prognostic signifcance of glycogen metabolism.mediated TME cell dusters in HCC,while a significant immune response was found in the immunotherapy cohort in patients treated with immune checkpoint blockade(ICB),especially for CAFs,T cells,and macrophages In summary,our study reveals for the first time that glycogen metabolism mediates intercellular communication in the hepatocellular carcinoma microenvironment while elucidating the anti-tumor mechanisms and immune prognostic responses of different subtypes of cell dusters.展开更多
AIM:To evaluate the relationship of overweight and obesity with retinal and choroidal thickness in adults without ocular symptoms by swept-source optical coherence tomography(SS-OCT).METHODS:According to the body mass...AIM:To evaluate the relationship of overweight and obesity with retinal and choroidal thickness in adults without ocular symptoms by swept-source optical coherence tomography(SS-OCT).METHODS:According to the body mass index(BMI)results,the adults enrolled in the cross-sectional study were divided into the normal group(18.50≤BMI<25.00 kg/m^(2)),the overweight group(25.00≤BMI<30.00 kg/m^(2)),and the obesity group(BMI≥30.00 kg/m^(2)).The one-way ANOVA and the Chi-square test were used for comparisons.Pearson’s correlation analysis was used to evaluate the relationships between the measured variables.RESULTS:This research covered the left eyes of 3 groups of 434 age-and sex-matched subjects each:normal,overweight,and obesity.The mean BMI was 22.20±1.67,26.82±1.38,and 32.21±2.35 kg/m^(2) in normal,overweight and obesity groups,respectively.The choroid was significantly thinner in both the overweight and obesity groups compared to the normal group(P<0.05 for all),while the retinal thickness of the three groups did not differ significantly.Pearson’s correlation analysis showed that BMI was significantly negatively correlated with choroidal thickness,but no significant correlation was observed between BMI and retinal thickness.CONCLUSION:Choroidal thickness is decreased in people with overweight or obesity.Research on changes in choroidal thickness contributes to the understanding of the mechanisms of certain ocular disorders in overweight and obese adults.展开更多
The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite ofte...The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite often has a relatively intact structure with few defects after long cycling.Yet,most spent graphite is simply burned or discarded due to its limited value and inferior performance on using conventional recycling methods that are complex,have low efficiency,and fail in performance restoration.Herein,we propose a fast,efficient,and“intelligent”strategy to regenerate and upcycle spent graphite based on defect‐driven targeted remediation.Using Sn as a nanoscale healant,we used rapid heating(~50 ms)to enable dynamic Sn droplets to automatically nucleate around the surface defects on the graphite upon cooling owing to strong binding to the defects(~5.84 eV/atom),thus simultaneously achieving Sn dispersion and graphite remediation.As a result,the regenerated graphite showed enhanced capacity and cycle stability(458.9 mAh g^(−1) at 0.2 A g^(−1) after 100 cycles),superior to those of commercial graphite.Benefiting from the self‐adaption of Sn dispersion,spent graphite with different degrees of defects can be regenerated to similar structures and performance.EverBatt analysis indicates that targeted regeneration and upcycling have significantly lower energy consumption(~99%reduction)and near‐zero CO_(2) emission,and yield much higher profit than hydrometallurgy,which opens a new avenue for direct upcycling of spend graphite in an efficient,green,and profitable manner for sustainable battery manufacture.展开更多
It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel...It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel underwater discharge stage identification method based on the Strong Tracking Filter(STF) and impedance change characteristics. The time-varying equivalent circuit model of the discharge underwater is established based on the plasma theory analysis of the impedance change characteristics and mechanism of the discharge process. The STF is used to reduce the randomness of the impedance of repeated discharges underwater, and then the universal identification resistance data is obtained. Based on the resistance variation characteristics of the discriminating resistance of the pre-breakdown, main, and oscillatory discharge stages, the threshold values for determining the discharge stage are obtained. These include the threshold values for the resistance variation rate(K) and the moment(t).Experimental and error analysis results demonstrate the efficacy of this innovative method in discharge stage determination, with a maximum mean square deviation of Scrless than 1.761.展开更多
●AIM:To study the changes and effect factors of posterior corneal surface after small incision lenticule extraction(SMILE)with different myopic diopters.●METHODS:Ninety eyes of 90 patients who underwent SMILE were i...●AIM:To study the changes and effect factors of posterior corneal surface after small incision lenticule extraction(SMILE)with different myopic diopters.●METHODS:Ninety eyes of 90 patients who underwent SMILE were included in this retrospective study.Patients were allocated into three groups based on the preoperative spherical equivalent(SE):low myopia(SE≥-3.00 D),moderate myopia(-3.00 D>SE>-6.00 D)and high myopia(SE≤-6.00 D).Posterior corneal surfaces were measured by a Scheimpflug camera preoperatively and different postoperative times(1wk,1,3,6mo,and 1y).Posterior mean elevation(PME)at 25 predetermined points of 3 concentric circles(2-,4-,and 6-mm diameter)above the best fit sphere was analyzed.●RESULTS:All surgeries were completed uneventfully and no ectasia was found through the observation.The difference of myopia group was significant at the 2-mm ring at 1 and 3mo postoperatively(1mo:P=0.017;3mo:P=0.018).The effect of time onΔPME was statistically significant(2-mm ring:P=0.001;4-mm ring:P<0.001;6-mm ring:P<0.001).The effect of different corneal locations onΔPME was significant except 1wk postoperatively(1mo:P=0.000;3mo:P=0.000;6mo:P=0.001;1y:P=0.001).Posterior corneal stability was linearly correlated with SE,central corneal thickness,ablation depth,residual bed thickness,percent ablation depth and percent stromal bed thickness.●CONCLUSION:The posterior corneal surface changes dynamically after SMILE.No protrusion is observed on the posterior corneal surface in patients with different degrees of myopia within one year after surgery.SMILE has good stability,accuracy,safety and predictability.展开更多
Geophysical fluid dynamics(GFD)is an interdisciplinary field that studies the large-scale motion of fluids in the natural world.With a wide range of applications such as weather forecasts and climate prediction,GFD em...Geophysical fluid dynamics(GFD)is an interdisciplinary field that studies the large-scale motion of fluids in the natural world.With a wide range of applications such as weather forecasts and climate prediction,GFD employs various research approaches including in-situ observations,satellite measurements,numerical simulations,theoretical analysis,artificial intelligence,and physical model experiments in laboratory.Among these approaches,rotating tank experiments provide a valuable tool for simulating naturally-occurring fluid motions in laboratories.With proportional scaling and proper techniques,scientists can reproduce multi-scale physical processes of stratified fluids in the rotation system,which allows for the simulation of essential characteristics of fluid motions in the atmosphere and oceans.In this review,rotating tanks of various scales in the world are introduced,as these tanks have been actively used to explore fundamental scientific questions in ocean and atmosphere dynamics.To illustrate the GFD experiments,three representative cases are presented to demonstrate the frontier achievements in the the GFD study by using rotating tank experiments:mesoscale eddies in the ocean,convection processes,and plume dynamics.Detailed references for the experimental procedures are provided.Future studies are encouraged to further explore the utilization of rotating tanks with improvements in experimental design and integration of other research methods.This is a promising direction of GFD to help enhance our understanding of the complex nature of fluid motions in the natural world and to address the challenges posed by global environmental changes.展开更多
The Ordos Basin is a large cratonic basin with stable deposition in Northwest China.Given its mostly stable subsidence background and the urgent need for saline water disposal and carbon dioxide storage in the coal mi...The Ordos Basin is a large cratonic basin with stable deposition in Northwest China.Given its mostly stable subsidence background and the urgent need for saline water disposal and carbon dioxide storage in the coal mining and coal chemical industries,the Ordos Basin has been chosen as a pilot demonstration site for carbon dioxide and saline water storage in China.However,few studies have been made to evaluate the sedimentary and sequence stratigraphy characteristics of this region,as well as their influence on carbon dioxide and saline water storage potential.To address this research gap,we conducted a sedimentary study of the Lower Triassic Liujiagou Formation in the northeastern Ordos Basin utilizing the stratigraphy theory,laboratory test analysis,and pilot project demonstration,to evaluate the area's viability for the deep geological storage of gas and liquid waste.We studied the tectonic setting,petrological features,and sedimentary characteristics of the favorable strata and predicted favorable areas based on sequence stratigraphy theory.The lithology predominantly consists of feldspathic graywacke,with a fine grain size and mostly fine-to-medium-grained sandstone.The distribution of thick-grained sandstone and fine-grained sediment was identified by dividing the sequence,and a favorable reservoir-cap assemblage configuration was formed.It's concluded that the Lower Triassic Liujiagou Formation exhibits suitable characteristics for the deep geological storage of carbon dioxide and saline water.This study demonstrates the importance of basic theory in guiding practical applications and provides a reference for the scientific selection of favorable areas for deep basin storage.展开更多
Active reflectors are often used to compensate the surface distortion caused by environmental factors that degrade the electromagnetic performance of large high-frequency reflector antennas.This is crucial for maintai...Active reflectors are often used to compensate the surface distortion caused by environmental factors that degrade the electromagnetic performance of large high-frequency reflector antennas.This is crucial for maintaining high gain operation in antennas.A distortion compensation method for the active reflector of a large dual-reflector antenna is proposed.A relationship is established between the surface deformation and the optical path difference for the primary reflector by geometric optics.Subsequently,employing finite element analysis,a polynomial fitting approach is used to describe the impact of adjusting points on the reflector surface based on the coordinates of each node.By standardizing the positions of various panels on the reflector,the fitting ns can be applied to the reflector panels of similar shapes.Then,based on the distribution characteristics of the primary reflector panels,the adjustment equation for the actuators is derived by the influence matrix method.It can be used to determine the adjustment amount of actuators to reduce the rms of the optical path difference.And,the least squares method is employed to resolve the matrix equation.The example of a 110 m aperture dual-reflector antenna is carried out by finite element analysis and the proposed method.The results show that the optical path difference is reduced significantly at various elevation cases,which indicates that the proposed method is effective.展开更多
BACKGROUND The diagnosis and treatment of depression in patients with chronic heart failure(CHF)is challenging,with no ideal treatment at present.AIM To analyze the clinical intervention effect of Xuefu Zhuyu decoctio...BACKGROUND The diagnosis and treatment of depression in patients with chronic heart failure(CHF)is challenging,with no ideal treatment at present.AIM To analyze the clinical intervention effect of Xuefu Zhuyu decoction(XFZYD)on CHF complicated with depression.METHODS The study cohort comprised 116 patients with CHF complicated with depression who received treatment from July 2020 to July 2023,of which 55 received Western medicine(control group)and 61 received XFZYD(research group).Data on clinical effectiveness,traditional Chinese medicine(TCM)syndrome score,cardiac function,negative emotions,and serum inflammatory factors,were collected for comparative analyses.RESULTS Compared with the control group,the research group had an evidently higher total effective rate.Furthermore,there were marked reductions in TCM symptom score,left ventricular end-diastolic diameter,left ventricular end-systolic diameter,Self-Rating Depression Scale,Hamilton Depression Scale,high-sensitivity C-reactive protein,monocyte chemoattractant protein-1,and matrix metalloproteinase-9 in the research group after treatment,and these were lower than the corresponding values in the control group.Left ventricular ejection fraction was increased and higher in the research group compared with the control group after treatment.CONCLUSION Our findings conclusively proved that XFZYD was considerably superior to Western medicine for treating CHF complicated with depression because it significantly alleviated patients’symptoms,improved cardiac function,relieved negative emotions,and reduced the levels of serum inflammatory factors.展开更多
文摘Objective: To evaluate the efficacy and safety of EGFR-TKI with the radiotherapy in EGFR mutant metastatic NSCLC. Methods: Retrospective analysis of 72 patients with stage IV lung cancer with EGFR-sensitive mutation. Patients in the A group were treated with the first-generation EGFR-TKI (Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor) combined with radiotherapy for primary tumors (34 cases). The B group was treated with the first-generation EGFR-TKI alone until the disease progressed (38 cases). PFS, OS, pulmonary infection and hematological toxicity during treatment were commented in both groups. Results: The objective remission rate was 47.1% (16/34) in the A group and 21.1% (8/38) in the B group. There was a significant difference between the two groups. There was no significant difference in hematological toxicity between the A group and the B group. There were 10 patients (29.4%) with degree II pulmonary infection in the A group and 3 patients (7.9%) in the B group. The difference between the two groups was statistically significant, suggesting that the incidence of pneumonia in the A group was higher than that in the B group. The median PFS (Progression-Free Survival)) and OS (Overall Survival) of the A group were significantly longer than those of the B group (16.5 months vs 9 months) and the median OS (36 months vs 19 months). The PFS and OS in the A group were significantly longer than those in the B group. Conclusion: EGFR-TKI combined with primary radiotherapy can significantly prolong the drug resistance time of EGFR mutant metastatic NSCLC.
基金supported by Jiangsu Provincial Medical Key Discipline,No.ZDXK202217(to CFL)Jiangsu Planned Projects for Postdoctoral Research Funds,No.1601056C(to SL).
文摘Parkinson’s disease is a neurodegenerative disease characterized by motor and gastrointestinal dysfunction.Gastrointestinal dysfunction can precede the onset of motor symptoms by several years.Gut microbiota dysbiosis is involved in the pathogenesis of Parkinson’s disease,whether it plays a causal role in motor dysfunction,and the mechanism underlying this potential effect,remain unknown.CCAAT/enhancer binding proteinβ/asparagine endopeptidase(C/EBPβ/AEP)signaling,activated by bacterial endotoxin,can promoteα-synuclein transcription,thereby contributing to Parkinson’s disease pathology.In this study,we aimed to investigate the role of the gut microbiota in C/EBPβ/AEP signaling,α-synuclein-related pathology,and motor symptoms using a rotenone-induced mouse model of Parkinson’s disease combined with antibiotic-induced microbiome depletion and fecal microbiota transplantation.We found that rotenone administration resulted in gut microbiota dysbiosis and perturbation of the intestinal barrier,as well as activation of the C/EBP/AEP pathway,α-synuclein aggregation,and tyrosine hydroxylase-positive neuron loss in the substantia nigra in mice with motor deficits.However,treatment with rotenone did not have any of these adverse effects in mice whose gut microbiota was depleted by pretreatment with antibiotics.Importantly,we found that transplanting gut microbiota derived from mice treated with rotenone induced motor deficits,intestinal inflammation,and endotoxemia.Transplantation of fecal microbiota from healthy control mice alleviated rotenone-induced motor deficits,intestinal inflammation,endotoxemia,and intestinal barrier impairment.These results highlight the vital role that gut microbiota dysbiosis plays in inducing motor deficits,C/EBPβ/AEP signaling activation,andα-synuclein-related pathology in a rotenone-induced mouse model of Parkinson’s disease.Additionally,our findings suggest that supplementing with healthy microbiota may be a safe and effective treatment that could help ameliorate the progression of motor deficits in patients with Parkinson’s disease.
基金supported by the National Natural Science Foundation of China(Nos.12125509,12222514,11961141003,and 12005304)National Key Research and Development Project(No.2022YFA1602301)+1 种基金CAST Young Talent Support Planthe CNNC Science Fund for Talented Young Scholars Continuous support for basic scientific research projects。
文摘The Moon provides a unique environment for investigating nearby astrophysical events such as supernovae.Lunar samples retain valuable information from these events,via detectable long-lived“fingerprint”radionuclides such as^(60)Fe.In this work,we stepped up the development of an accelerator mass spectrometry(AMS)method for detecting^(60)Fe using the HI-13tandem accelerator at the China Institute of Atomic Energy(CIAE).Since interferences could not be sufficiently removed solely with the existing magnetic systems of the tandem accelerator and the following Q3D magnetic spectrograph,a Wien filter with a maximum voltage of±60 kV and a maximum magnetic field of 0.3 T was installed after the accelerator magnetic systems to lower the detection background for the low abundance nuclide^(60)Fe.A 1μm thick Si_(3)N_(4) foil was installed in front of the Q3D as an energy degrader.For particle detection,a multi-anode gas ionization chamber was mounted at the center of the focal plane of the spectrograph.Finally,an^(60)Fe sample with an abundance of 1.125×10^(-10)was used to test the new AMS system.These results indicate that^(60)Fe can be clearly distinguished from the isobar^(60)Ni.The sensitivity was assessed to be better than 4.3×10^(-14)based on blank sample measurements lasting 5.8 h,and the sensitivity could,in principle,be expected to be approximately 2.5×10^(-15)when the data were accumulated for 100 h,which is feasible for future lunar sample measurements because the main contaminants were sufficiently separated.
基金financial support from The University of Manchester to cover his PhD tuition fees for him to carry out this workChina National High-end Foreign Experts Recruitment Plan Project (G2023018001L) for partially supporting the work。
文摘Electrochemical production of hydrogen from water requires the development ofelectrocatalysts that are active,stable,and low-cost for water splitting.To address these challenges,researchers are increasingly exploring binder-free electrocatalytic integratedelectrodes (IEs) as an alternative to conventional powder-based electrode preparation methods,for the former is highly desirable to improve the catalytic activity and long-term stability for large-scale applications of electrocatalysts.Herein,we demonstrate a laser-inducedhydrothermal reaction (LIHR) technique to grow NiMoO4nanosheets on nickel foam,which is then calcined under H2/Ar mixed gases to prepare the IE IE-NiMo-LR.This electrode exhibits superior hydrogen evolution reaction performance,requiring overpotentials of 59,116 and143 mV to achieve current densities of 100,500 and 1000 mA·cm-2.During the 350 h chronopotentiometry test at current densities of 100 and 500 m A·cm-2,the overpotentialremains essentially unchanged.In addition,NiFe-layered double hydroxide grown on Ni foam is also fabricated with the same LIHR method and coupled with IE-NiMo-IR to achieve water splitting.This combination exhibits excellent durability under industrial current density.The energy consumption and production efficiency of the LIHR method are systematicallycompared with the conventional hydrothermal method.The LIHR method significantly improves the production rate by over 19 times,while consuming only 27.78%of the total energy required by conventional hydrothermal methods to achieve the same production.
基金supported by the Modern Agro-industry Technology Research System,China(CARS-42-3)the“JBGS”Project of Seed Industry Revitalization in Jiangsu Province,China(JBGS(2021)023)the Project in Ministry of Agriculture and Rural Affairs of China(19211168).
文摘Broody behavior is regulated by hypothalamic prolactin secretion,which seriously affects egg production in poulty production.Numerous studies have provided evidence that animal behavior is governed by dynamic bidirectional communication between specific gut bacteria and their host via the brain-gut-microbiome axis.However,little research focused on how the gut microbiota influence broody behavior in poultry.In this study,Zhedong white geese in laying and brooding phases were selected.Ten differentially abundant bacteria in cecum were detected between brooding and laying geese through metagenomic analyses and 16S rRNA sequencing(P<0.05),and Bacteroides fragilis was specifically identified as a key driver species in the brooding geese.Moverover,the serum metabolites were quantified,and the 313 differentially abundant metabolites were found between the two groups of different physiological geese.They were primarily enriched in the tryptophan metabolism pathways.Pearson correlation analyses revealed there was a significant positive correlation between B.fragilis abundance and the context of 11 tryptophan metabolism-related metabolites(such as serotonin,etc.)in broody geese,which hinted that those tryptophan metabolites might be produced or driven by B.fragilis.Finally,the serum hormone levels were also measured.We found there was a positive correlation between B.fragilis abundance and content of serotonin.Besides,prolactin secreted by the pituitary gland was greater in brooding geese than that in laying geese,which was also highly correlated with B.fragilis abundance.This result implied that B.fragilis could promote the secretion of prolactin by the pituitary gland.Together,the current study findings provided the information on gut microbiota influencing broody behavior,B.fragilis produced or driven more serum serotonin,and stimulated the pituitary gland to secret more prolactin,which potentially offered a new enlightenment for the intervention of broody behavior in poultry.
基金supported by the National Natural Science Foundation of China(Grant Nos.52034009 and 51974319)the Yue Qi Distinguished Scholar Project(Grant No.2020JCB01).
文摘The combination of the dipping effect and hydromechanical(H-M)coupling effect can easily lead to water inrush disasters in water-rich roadways with different dip angles in coal mines.Therefore,H-M coupling tests of bedded sandstones under identical osmotic pressure and various confining pressures were conducted.Then,the evolution curves of stress-strain,permeability and damage,macro-and mesoscopic failure characteristics were obtained.Subsequently,the mechanical behaviour was characterized,and finally the failure mechanism was revealed.The results showed that:(1)The failure of the sandstone with the bedding angle of 45°or 60°was the structure-dominant type,while that with the bedding angle of 0°,30°or 90°was the force-dominant type.(2)When the bedding angle was in the range of(0°,30°)or(45°,90°),the confining pressure played a dominant role in influencing the peak strength.However,withinβ∈(30°,45°),the bedding effect played a dominant role in the peak strength.(3)With the increase in bedding angle,the cohesion increased first,then decreased and finally increased,while the internal friction angle was the opposite.(4)When the bedding angle was 0°or 30°,the“water wedging”effect and the“bedding buckling”effect would lead to the forking or converging shear failure.When the bedding angle was 45°or 60°,the sliding friction effect would lead to the shear slipping failure.When the bedding angle was 90°,the combination of the“bedding buckling”effect and shear effect would lead to the mixed tension-shear failure.The above conclusions obtained are helpful for the prevention of water inrush disasters in water-rich roadways with different dips in coal mines.
基金supported by the Open Fund of Magnetic Confinement Laboratory of Anhui Province(No.2023 AMF03005)the China Postdoctoral Science Foundation(No.2021M703256)+4 种基金the Director Funding of Hefei Institutes of Physical Science,Chinese Academy of Sciences(No.YZJJ2022QN16)the National Key R&D Program of China(Nos.2022YFE03050003,2019YFE03080200,2019Y FE03040002,and 2022YFE03070004)National Natural Science Foundation of China(Nos.12075284,12175277,12275315 and 12275311)the National Magnetic Confinement Fusion Science Program of China(No.2022YFE03040001)the Science Foundation of the Institute of Plasma Physics,Chinese Academy of Sciences(No.DSJJ-2021-08)。
文摘Microwave reflectometry is a powerful diagnostic that can measure the density profile and localized turbulence with high spatial and temporal resolution and will be used in ITER,so understanding the influence of plasma perturbations on the reflect signal is important.The characteristics of the reflect signal from profile reflectometry,the time-of-flight(TOF)signal associated with the MHD instabilities,are investigated in EAST.Using a 1D full-wave simulation code by the Finite-DifferenceTime-Domain(FDTD)method,it is well validated that the local density flattening could induce the discontinuity of the simulated TOF signal and an obvious change of reflect amplitude.Experimental TOF signals under different types of MHD instabilities(sawtooth,sawtooth precursors and tearing mode)are studied in detail and show agreement with the simulation.Two new improved algorithms for detecting and localizing the radial positions of the low-order rational surface,the cross-correlation and gradient threshold(CGT)method and the 2D convolutional neural network approach(CNN)are presented for the first time.It is concluded that TOF signal analysis from profile reflectometry can provide a straightforward and localized measurement of the plasma perturbation from the edge to the core simultaneously and may be a complement or correction to the q-profile control,which will be beneficial for the advanced tokamak operation.
基金support by the financial support of the National Nature Science Foundation of China(No.52274001,No.52074018)China Petrochemical Corporation(No.p21069)The financial support of Fundamental Research Funds for the Central Universities(buctrc202017)。
文摘The study considers gas compression properties,gas slippage,back pressure(BP),phase transition(PT),well depth,and differences in gas-liquid physical properties.A new temperature model for multiphase flow is proposed by considering phase transition in the drilling process.The mathematical model of multiphase flow is solved using the finite difference method with annulus mesh division for grid nodes,and a module for multiphase flow calculation and analysis is developed.Numerical results indicate that the temperature varies along the annulus with the variation of gas influx at the bottom of the well.During the process of controlled pressure drilling,as gas slips along the annulus to the wellhead,its volume continuously expands,leading to an increase in the gas content within the annulus,and consequently,an increase in the pressure drop caused by gas slippage.The temperature increases with the increase in BP and decreases in gas influx rate and wellbore diameter.During gas influx,the thermal conductivity coefficient for the gas-drilling mud two phases is significantly weakened,resulting in a considerable change in temperature along the annulus.In the context of MPD,the method of slightly changing the temperature along the annulus by controlling the back pressure is feasible.
基金Liuzhou City's Top Ten Hundred Talents Project,Liuzhou Science and Technology Project(Grant Nos.2021CBC0126 and 2021CBC0123)Guangxi Zhuang Autonomous Region Health and Family Planning Commission Projects(Z20210561,Z20210903)+1 种基金liuzhou Scienceand Technology Plan Projects(2021CBC0121,2021CBC0128).
文摘Glycogen metabolism plays a key role in the development of hepatoellular carcinoma(HCC),but the function of glycogen metabolism genes in the tumor microenvironment(TME)is still to be elucidated.Single cell RNA-seq data were obtained from ten HCC tumor samples totaling 64,545 cells and 65 glycogen metabolism genes were analyzed bya nonnegative matrix factorization(NMF).The prognosis and immune response of new glycogen TME cell dusters were predicted by using HCC and immunotherapy cohorts from public databases.HOC single cell analysis was divided into fibroblasts,NT T cells,macrophages,endothelial clls,and B cells,which were separately divided into new cell clusters by glycogen metabolism gene annotation.Pseudo temporal trajectory analysis demonstrated the temporal differentiation trajectory of different glycogen subtype cell dusters.Cellular communication analysis revealed extensive interactions between endothelial cells with glycogen metabolizing TME cell.related subtypes and diferent glycogen subtype cell clusters.SCENIC analysis of transcription factors upstream of TME cell clusters with different glycogen metabolism.In addition,TME cell dusters of glycogen metabolism were found to be enriched in expression in CAF subtypes,CD8 depleted,M1,and M2 types.Bulk seq analysis showed the prognostic signifcance of glycogen metabolism.mediated TME cell dusters in HCC,while a significant immune response was found in the immunotherapy cohort in patients treated with immune checkpoint blockade(ICB),especially for CAFs,T cells,and macrophages In summary,our study reveals for the first time that glycogen metabolism mediates intercellular communication in the hepatocellular carcinoma microenvironment while elucidating the anti-tumor mechanisms and immune prognostic responses of different subtypes of cell dusters.
基金Supported by the Science and Technology Commission of Shanghai Municipality(No.20Y11910800).
文摘AIM:To evaluate the relationship of overweight and obesity with retinal and choroidal thickness in adults without ocular symptoms by swept-source optical coherence tomography(SS-OCT).METHODS:According to the body mass index(BMI)results,the adults enrolled in the cross-sectional study were divided into the normal group(18.50≤BMI<25.00 kg/m^(2)),the overweight group(25.00≤BMI<30.00 kg/m^(2)),and the obesity group(BMI≥30.00 kg/m^(2)).The one-way ANOVA and the Chi-square test were used for comparisons.Pearson’s correlation analysis was used to evaluate the relationships between the measured variables.RESULTS:This research covered the left eyes of 3 groups of 434 age-and sex-matched subjects each:normal,overweight,and obesity.The mean BMI was 22.20±1.67,26.82±1.38,and 32.21±2.35 kg/m^(2) in normal,overweight and obesity groups,respectively.The choroid was significantly thinner in both the overweight and obesity groups compared to the normal group(P<0.05 for all),while the retinal thickness of the three groups did not differ significantly.Pearson’s correlation analysis showed that BMI was significantly negatively correlated with choroidal thickness,but no significant correlation was observed between BMI and retinal thickness.CONCLUSION:Choroidal thickness is decreased in people with overweight or obesity.Research on changes in choroidal thickness contributes to the understanding of the mechanisms of certain ocular disorders in overweight and obese adults.
基金The Fundamental Research Funds for the Central Universities,HUST,Grant/Award Number:2021GCRC046The Open Fund of State Key Laboratory of New Textile Materials and Advanced Processing Technologies,Grant/Award Number:FZ2022005Natural Science Foundation of Hubei Province,China,Grant/Award Number:2022CFA031。
文摘The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite often has a relatively intact structure with few defects after long cycling.Yet,most spent graphite is simply burned or discarded due to its limited value and inferior performance on using conventional recycling methods that are complex,have low efficiency,and fail in performance restoration.Herein,we propose a fast,efficient,and“intelligent”strategy to regenerate and upcycle spent graphite based on defect‐driven targeted remediation.Using Sn as a nanoscale healant,we used rapid heating(~50 ms)to enable dynamic Sn droplets to automatically nucleate around the surface defects on the graphite upon cooling owing to strong binding to the defects(~5.84 eV/atom),thus simultaneously achieving Sn dispersion and graphite remediation.As a result,the regenerated graphite showed enhanced capacity and cycle stability(458.9 mAh g^(−1) at 0.2 A g^(−1) after 100 cycles),superior to those of commercial graphite.Benefiting from the self‐adaption of Sn dispersion,spent graphite with different degrees of defects can be regenerated to similar structures and performance.EverBatt analysis indicates that targeted regeneration and upcycling have significantly lower energy consumption(~99%reduction)and near‐zero CO_(2) emission,and yield much higher profit than hydrometallurgy,which opens a new avenue for direct upcycling of spend graphite in an efficient,green,and profitable manner for sustainable battery manufacture.
基金provided by the shale gas resource evaluation methods and exploration technology research project of the National Science and Technology Major Project of China(No.2016ZX05034)Graduate Innovative Engineering Funding Project of China University of Petroleum(East China)(No.YCX2021109)。
文摘It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel underwater discharge stage identification method based on the Strong Tracking Filter(STF) and impedance change characteristics. The time-varying equivalent circuit model of the discharge underwater is established based on the plasma theory analysis of the impedance change characteristics and mechanism of the discharge process. The STF is used to reduce the randomness of the impedance of repeated discharges underwater, and then the universal identification resistance data is obtained. Based on the resistance variation characteristics of the discriminating resistance of the pre-breakdown, main, and oscillatory discharge stages, the threshold values for determining the discharge stage are obtained. These include the threshold values for the resistance variation rate(K) and the moment(t).Experimental and error analysis results demonstrate the efficacy of this innovative method in discharge stage determination, with a maximum mean square deviation of Scrless than 1.761.
基金Supported by Shandong Provincial Natural Science Foundation(No.ZR2022QH384).
文摘●AIM:To study the changes and effect factors of posterior corneal surface after small incision lenticule extraction(SMILE)with different myopic diopters.●METHODS:Ninety eyes of 90 patients who underwent SMILE were included in this retrospective study.Patients were allocated into three groups based on the preoperative spherical equivalent(SE):low myopia(SE≥-3.00 D),moderate myopia(-3.00 D>SE>-6.00 D)and high myopia(SE≤-6.00 D).Posterior corneal surfaces were measured by a Scheimpflug camera preoperatively and different postoperative times(1wk,1,3,6mo,and 1y).Posterior mean elevation(PME)at 25 predetermined points of 3 concentric circles(2-,4-,and 6-mm diameter)above the best fit sphere was analyzed.●RESULTS:All surgeries were completed uneventfully and no ectasia was found through the observation.The difference of myopia group was significant at the 2-mm ring at 1 and 3mo postoperatively(1mo:P=0.017;3mo:P=0.018).The effect of time onΔPME was statistically significant(2-mm ring:P=0.001;4-mm ring:P<0.001;6-mm ring:P<0.001).The effect of different corneal locations onΔPME was significant except 1wk postoperatively(1mo:P=0.000;3mo:P=0.000;6mo:P=0.001;1y:P=0.001).Posterior corneal stability was linearly correlated with SE,central corneal thickness,ablation depth,residual bed thickness,percent ablation depth and percent stromal bed thickness.●CONCLUSION:The posterior corneal surface changes dynamically after SMILE.No protrusion is observed on the posterior corneal surface in patients with different degrees of myopia within one year after surgery.SMILE has good stability,accuracy,safety and predictability.
基金Supported by the National Key Research and Development Program of China(Nos.2017YFA0604100,2016YFC1402004,2017YFC1404200)the Program for Innovation Research and Entrepreneurship Team in Jiangsu Provincethe National Natural Science Foundation of China(Nos.41476022,41490643)。
文摘Geophysical fluid dynamics(GFD)is an interdisciplinary field that studies the large-scale motion of fluids in the natural world.With a wide range of applications such as weather forecasts and climate prediction,GFD employs various research approaches including in-situ observations,satellite measurements,numerical simulations,theoretical analysis,artificial intelligence,and physical model experiments in laboratory.Among these approaches,rotating tank experiments provide a valuable tool for simulating naturally-occurring fluid motions in laboratories.With proportional scaling and proper techniques,scientists can reproduce multi-scale physical processes of stratified fluids in the rotation system,which allows for the simulation of essential characteristics of fluid motions in the atmosphere and oceans.In this review,rotating tanks of various scales in the world are introduced,as these tanks have been actively used to explore fundamental scientific questions in ocean and atmosphere dynamics.To illustrate the GFD experiments,three representative cases are presented to demonstrate the frontier achievements in the the GFD study by using rotating tank experiments:mesoscale eddies in the ocean,convection processes,and plume dynamics.Detailed references for the experimental procedures are provided.Future studies are encouraged to further explore the utilization of rotating tanks with improvements in experimental design and integration of other research methods.This is a promising direction of GFD to help enhance our understanding of the complex nature of fluid motions in the natural world and to address the challenges posed by global environmental changes.
基金funded by the Science and Technology Innovation Project of China National Administration of Coal Geology(ZMKJ-2021-ZX02)the National Key Research and Development Program of China(2023YFC3012104)Key Development Program of Shaanxi Province(2024SF-YBXM-603).
文摘The Ordos Basin is a large cratonic basin with stable deposition in Northwest China.Given its mostly stable subsidence background and the urgent need for saline water disposal and carbon dioxide storage in the coal mining and coal chemical industries,the Ordos Basin has been chosen as a pilot demonstration site for carbon dioxide and saline water storage in China.However,few studies have been made to evaluate the sedimentary and sequence stratigraphy characteristics of this region,as well as their influence on carbon dioxide and saline water storage potential.To address this research gap,we conducted a sedimentary study of the Lower Triassic Liujiagou Formation in the northeastern Ordos Basin utilizing the stratigraphy theory,laboratory test analysis,and pilot project demonstration,to evaluate the area's viability for the deep geological storage of gas and liquid waste.We studied the tectonic setting,petrological features,and sedimentary characteristics of the favorable strata and predicted favorable areas based on sequence stratigraphy theory.The lithology predominantly consists of feldspathic graywacke,with a fine grain size and mostly fine-to-medium-grained sandstone.The distribution of thick-grained sandstone and fine-grained sediment was identified by dividing the sequence,and a favorable reservoir-cap assemblage configuration was formed.It's concluded that the Lower Triassic Liujiagou Formation exhibits suitable characteristics for the deep geological storage of carbon dioxide and saline water.This study demonstrates the importance of basic theory in guiding practical applications and provides a reference for the scientific selection of favorable areas for deep basin storage.
基金funded by the National Natural Science Foundation of China(NSFC,grant Nos.12363011,52275270,and 52275269)Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2023D01C22)+1 种基金the Tianchi Talents Program of Xinjiang,the National Key Basic Research Program of China(No.2021YFC2203501)the Xinjiang Postdoctoral Foundation。
文摘Active reflectors are often used to compensate the surface distortion caused by environmental factors that degrade the electromagnetic performance of large high-frequency reflector antennas.This is crucial for maintaining high gain operation in antennas.A distortion compensation method for the active reflector of a large dual-reflector antenna is proposed.A relationship is established between the surface deformation and the optical path difference for the primary reflector by geometric optics.Subsequently,employing finite element analysis,a polynomial fitting approach is used to describe the impact of adjusting points on the reflector surface based on the coordinates of each node.By standardizing the positions of various panels on the reflector,the fitting ns can be applied to the reflector panels of similar shapes.Then,based on the distribution characteristics of the primary reflector panels,the adjustment equation for the actuators is derived by the influence matrix method.It can be used to determine the adjustment amount of actuators to reduce the rms of the optical path difference.And,the least squares method is employed to resolve the matrix equation.The example of a 110 m aperture dual-reflector antenna is carried out by finite element analysis and the proposed method.The results show that the optical path difference is reduced significantly at various elevation cases,which indicates that the proposed method is effective.
基金Supported by Scientific Research Plan Project of Hebei Provincial Administration of Traditional Chinese Medicine,No.2018507.
文摘BACKGROUND The diagnosis and treatment of depression in patients with chronic heart failure(CHF)is challenging,with no ideal treatment at present.AIM To analyze the clinical intervention effect of Xuefu Zhuyu decoction(XFZYD)on CHF complicated with depression.METHODS The study cohort comprised 116 patients with CHF complicated with depression who received treatment from July 2020 to July 2023,of which 55 received Western medicine(control group)and 61 received XFZYD(research group).Data on clinical effectiveness,traditional Chinese medicine(TCM)syndrome score,cardiac function,negative emotions,and serum inflammatory factors,were collected for comparative analyses.RESULTS Compared with the control group,the research group had an evidently higher total effective rate.Furthermore,there were marked reductions in TCM symptom score,left ventricular end-diastolic diameter,left ventricular end-systolic diameter,Self-Rating Depression Scale,Hamilton Depression Scale,high-sensitivity C-reactive protein,monocyte chemoattractant protein-1,and matrix metalloproteinase-9 in the research group after treatment,and these were lower than the corresponding values in the control group.Left ventricular ejection fraction was increased and higher in the research group compared with the control group after treatment.CONCLUSION Our findings conclusively proved that XFZYD was considerably superior to Western medicine for treating CHF complicated with depression because it significantly alleviated patients’symptoms,improved cardiac function,relieved negative emotions,and reduced the levels of serum inflammatory factors.