The utilization of powdery semi-coke as a power fuel in pulverized coal-fired power plants has become a new and potential technique to consume the excess powdery semi-coke.The characteristic of low volatile results in...The utilization of powdery semi-coke as a power fuel in pulverized coal-fired power plants has become a new and potential technique to consume the excess powdery semi-coke.The characteristic of low volatile results in poor combustion performance and high NO_(x) emission,and to co-fire with bituminous coal is a practical strategy to address this problem.However,the co-combustion characteristics and the inherent interaction between semi-coke and coal remain insufficiently understood.In addition,the influences of secondary air arrangement,the boiler operation load,and the fuel type on co-combustion process are still unclear,which is urgent to be further explored.In the present study,experiments and numerical simulations were jointly utilized to inquire into the co-combustion behaviors and NO_(x) emission features of semi-coke and coal.The results demonstrated that the"out-furnace method"was a suitable choice for small-capacity boiler when the proportion of semi-coke was 33%,due to the limited combinations of the semi-coke injection position.It was recommended that semi-coke was preferred to be injected from the middle layers of the furnace under the"in-furnace method"to improve the overall co-combustion performance.The critical value of the separated over fire air ratio in this study was 27.5%,over which a slight drop of carbon content in fly ash could come about.Moreover,the elevation in the proportion of separated over fire air gave rise to the significant decline of NO_(x) concentration.The constricted secondary air arrangement was preferred to be employed due to the high boiler efficiency.The separated over fire air and the surrounding air needed to maintain a wide-open degree to prevent the increase of NO_(x) emissions and the coking of nozzles.For the load reduction regulation method adopted in this study,the NO_(x) concentration first rose and then dropped,while the burnout ratio decreased obviously as the operation load was reduced.Different combinations of coal and semi-coke generated significant influences on co-combustion behaviors within the furnace.The NO_(x )generated by high-volatile fuel (bituminous coal) combustion was mainly affected by volatile-N,while the NO_(x )generated by low-volatile fuel (semi-coke) was mainly impacted by char-N.This study is of guiding significance for the efficient and clean utilization and beneficial to the large-scale application of powder semi-coke in power plants.展开更多
基金financial support from the National Key R&D Program of China (2017YFB0602003)。
文摘The utilization of powdery semi-coke as a power fuel in pulverized coal-fired power plants has become a new and potential technique to consume the excess powdery semi-coke.The characteristic of low volatile results in poor combustion performance and high NO_(x) emission,and to co-fire with bituminous coal is a practical strategy to address this problem.However,the co-combustion characteristics and the inherent interaction between semi-coke and coal remain insufficiently understood.In addition,the influences of secondary air arrangement,the boiler operation load,and the fuel type on co-combustion process are still unclear,which is urgent to be further explored.In the present study,experiments and numerical simulations were jointly utilized to inquire into the co-combustion behaviors and NO_(x) emission features of semi-coke and coal.The results demonstrated that the"out-furnace method"was a suitable choice for small-capacity boiler when the proportion of semi-coke was 33%,due to the limited combinations of the semi-coke injection position.It was recommended that semi-coke was preferred to be injected from the middle layers of the furnace under the"in-furnace method"to improve the overall co-combustion performance.The critical value of the separated over fire air ratio in this study was 27.5%,over which a slight drop of carbon content in fly ash could come about.Moreover,the elevation in the proportion of separated over fire air gave rise to the significant decline of NO_(x) concentration.The constricted secondary air arrangement was preferred to be employed due to the high boiler efficiency.The separated over fire air and the surrounding air needed to maintain a wide-open degree to prevent the increase of NO_(x) emissions and the coking of nozzles.For the load reduction regulation method adopted in this study,the NO_(x) concentration first rose and then dropped,while the burnout ratio decreased obviously as the operation load was reduced.Different combinations of coal and semi-coke generated significant influences on co-combustion behaviors within the furnace.The NO_(x )generated by high-volatile fuel (bituminous coal) combustion was mainly affected by volatile-N,while the NO_(x )generated by low-volatile fuel (semi-coke) was mainly impacted by char-N.This study is of guiding significance for the efficient and clean utilization and beneficial to the large-scale application of powder semi-coke in power plants.