Destruction of organic contaminants in water by ozonation is a gas-liquid process which involves ozone mass transfer and fast irreversible chemical reactions. Ozonation reactor design and process optimizing require th...Destruction of organic contaminants in water by ozonation is a gas-liquid process which involves ozone mass transfer and fast irreversible chemical reactions. Ozonation reactor design and process optimizing require the modeling of the gas-liquid interactions within the reactor. In this paper a theoretical model combining the fluid dynamic and reaction kinetic parameters is proposed for predicting the destruction rates of organic pollutants in a semi-batch stirred-tank reactor by ozonation. A simple expression for the enhancement factor as our previous work has been applied to evaluate the chemical mass transfer coefficient in ozone absorption. 2,4-dichlorophenol (2,4-DCP) and 2,6-DCP or their mixture are chosen as the model compounds for simulating, and the predicted DCP concentrations are compared with some measured data.展开更多
Titania-grafted poly(styrene-divinylbenzene)(TiO2/PSt-DVB) nanocomposite microspheres were prepared by an open-ring reaction and radical grafting copolymerization method. The TiO2 nanoparticles were first modified...Titania-grafted poly(styrene-divinylbenzene)(TiO2/PSt-DVB) nanocomposite microspheres were prepared by an open-ring reaction and radical grafting copolymerization method. The TiO2 nanoparticles were first modified by attachment of epoxy groups to their surfaces to provide reactive groups that could covalently bond to the polymer (PSt-DVB) microspheres. The nanocomposite obtained was characterized by FTIR, SEM, XRD, and TGA analyses as well as UV-Vis spectrophotometry. The results indicated that the TiO2 nanoparticles were uniformly grafted onto the surface of the polymer microsphere producing grain sizes of about 5―10 μm. The modified TiO2 showed better UV absorbing property than the unmodified form, and the nanocomposite also retained the same UV absorbing property as the free modified TiO2 nanoparticle.展开更多
文摘Destruction of organic contaminants in water by ozonation is a gas-liquid process which involves ozone mass transfer and fast irreversible chemical reactions. Ozonation reactor design and process optimizing require the modeling of the gas-liquid interactions within the reactor. In this paper a theoretical model combining the fluid dynamic and reaction kinetic parameters is proposed for predicting the destruction rates of organic pollutants in a semi-batch stirred-tank reactor by ozonation. A simple expression for the enhancement factor as our previous work has been applied to evaluate the chemical mass transfer coefficient in ozone absorption. 2,4-dichlorophenol (2,4-DCP) and 2,6-DCP or their mixture are chosen as the model compounds for simulating, and the predicted DCP concentrations are compared with some measured data.
基金Fosan Scientific Special Funds of Production-Study-Research(No.2006A034)
文摘Titania-grafted poly(styrene-divinylbenzene)(TiO2/PSt-DVB) nanocomposite microspheres were prepared by an open-ring reaction and radical grafting copolymerization method. The TiO2 nanoparticles were first modified by attachment of epoxy groups to their surfaces to provide reactive groups that could covalently bond to the polymer (PSt-DVB) microspheres. The nanocomposite obtained was characterized by FTIR, SEM, XRD, and TGA analyses as well as UV-Vis spectrophotometry. The results indicated that the TiO2 nanoparticles were uniformly grafted onto the surface of the polymer microsphere producing grain sizes of about 5―10 μm. The modified TiO2 showed better UV absorbing property than the unmodified form, and the nanocomposite also retained the same UV absorbing property as the free modified TiO2 nanoparticle.