Ti ion implantation was implanted into PVD-TiN films using a metal vapor vacuum arc (MEVVA) ion source with a low implantation dose and at a time-averaged ion beam current density of 25|O.A-cm’2. The wear characteris...Ti ion implantation was implanted into PVD-TiN films using a metal vapor vacuum arc (MEVVA) ion source with a low implantation dose and at a time-averaged ion beam current density of 25|O.A-cm’2. The wear characteristics of the implanted zone was measured and compared to the performance of unimplanted zone by a pin-on-disc apparatus and an optical interference microscope. The structure of the implanted zone and unimplanted zone was observed by X-ray photoelectron spectroscopy (XPS) and high voltage electron microscopy (HVEM). The wear mechanisms of the TiN film after ion implantation were discussed according to the results of XPS and HVEM.展开更多
Mo ions extracted from a metal vapor vacuum arc ion source (MEVVA) were implanted into 4Cr5MoV1Si(H13) steel samples with a high implantation dose of 5×1017cm-2 and a pulsed ion beam flux of about 300 μA·cm...Mo ions extracted from a metal vapor vacuum arc ion source (MEVVA) were implanted into 4Cr5MoV1Si(H13) steel samples with a high implantation dose of 5×1017cm-2 and a pulsed ion beam flux of about 300 μA·cm-2·An optical interference microscope and pin-on-disc apparatus were used to investigate the wear and friction characteristics of the steel. The results from Rutherford backscattering spectroscopy (RBS) and the collision theory demonstrated that the radiation enhanced diffusion gave great influence on the Mo profile. It was observed by X-ray photoelectron spectroscopy (XPS) and grazing-angle X-ray diffraction (GXRD) that carbide of Mo appeared in the doped region for the implantation at 48 kV. The results showed that improvement in the wear resistance of the Mo-implanted steel were mainly due to the formation of Mo2C in the doped zone and the implantation affected zone underneath. Oxidation resistance of the surface iron and the surface with small crystal grains gave influences on the wear resistance in a way.展开更多
基金supported partly by Science and Technology Engineering of Nantong(2004032)Nantong Institute of Technology(200347)
文摘Ti ion implantation was implanted into PVD-TiN films using a metal vapor vacuum arc (MEVVA) ion source with a low implantation dose and at a time-averaged ion beam current density of 25|O.A-cm’2. The wear characteristics of the implanted zone was measured and compared to the performance of unimplanted zone by a pin-on-disc apparatus and an optical interference microscope. The structure of the implanted zone and unimplanted zone was observed by X-ray photoelectron spectroscopy (XPS) and high voltage electron microscopy (HVEM). The wear mechanisms of the TiN film after ion implantation were discussed according to the results of XPS and HVEM.
基金the National Natural Science Foundation of China (No. 59671051) and by the Natural Science Foundation of Nantong Institute of Technology (No. 200347)
文摘Mo ions extracted from a metal vapor vacuum arc ion source (MEVVA) were implanted into 4Cr5MoV1Si(H13) steel samples with a high implantation dose of 5×1017cm-2 and a pulsed ion beam flux of about 300 μA·cm-2·An optical interference microscope and pin-on-disc apparatus were used to investigate the wear and friction characteristics of the steel. The results from Rutherford backscattering spectroscopy (RBS) and the collision theory demonstrated that the radiation enhanced diffusion gave great influence on the Mo profile. It was observed by X-ray photoelectron spectroscopy (XPS) and grazing-angle X-ray diffraction (GXRD) that carbide of Mo appeared in the doped region for the implantation at 48 kV. The results showed that improvement in the wear resistance of the Mo-implanted steel were mainly due to the formation of Mo2C in the doped zone and the implantation affected zone underneath. Oxidation resistance of the surface iron and the surface with small crystal grains gave influences on the wear resistance in a way.