Overpressure systems are widely developed in the central depression and paleo-uplift in the Yinggehai and Qiongdongnan basins. They can be divided into three types according to the origin of abnormally high formation ...Overpressure systems are widely developed in the central depression and paleo-uplift in the Yinggehai and Qiongdongnan basins. They can be divided into three types according to the origin of abnormally high formation pressure in the reservoirs, i.e. the autochthonous, vertically-transmitted and laterally-transmitted types. The autochthonous overpressure system results from rapid disequilibrium sediment loading and compaction. In the allochthonous overpressure system, the increase of fluid pressure in sandstone originates from the invasion of overpressured fluid flowing vertically or laterally through the conduit units. The autochthonous overpressure system occurs in the deep-lying strata of Neogene age in the central depression of the Yinggehai and Qiongdongnan basins. The vertically transmitted overpressure system is developed in the shallow strata of Late Miocene and Pliocene ages in the diapiric zone of the central Yinggehai basin, and the laterally transmitted overpressure system occurs in the Oligocene strata of paleo-uplifts, such as the structure of Ya-211 in the Qiongdongnan basin. The results indicate that the autochthonous overpressure system is generally a closed one, which is unfavorable for the migration and accumulation of hydrocarbons. In the allochthonous overpressure system, hydrocarbon accumulation depends on the relationship between the formation of overpressure systems and the spatial location and duration of hydrocarbon migration. The interval overlying the overpressure system is usually a favorable hydrocarbon accumulation zone if the duration of fluid expulsion coincides with that of hydrocarbon accumulation.展开更多
The characteristics and distribution of faults in Yinggehai basin discussed in this paper reveal the structural effects of the overpressure fluid expulsion. The rapid subsidence and mud rich intervals of the marine r...The characteristics and distribution of faults in Yinggehai basin discussed in this paper reveal the structural effects of the overpressure fluid expulsion. The rapid subsidence and mud rich intervals of the marine rocks dominate the formation of the overpressure systems and the enormous volumes of the overpressure fluids in the basin. Triggered by some faults, the overpressure fluids were expulsed rapidly from the overpressure compartments to form a series of diapirs in the basin, resulting in the dense fractures or faults and folds in the limbs of diapirs. These fractures and faults provided the migration pathway for the vertical flow of hydrocarbons, so that the gas fields arising from this process might migrate upwards to the sandstone reservoir. Therefore, the hydrocarbon accumulations are usually located in the upper parts of diapiric structures.展开更多
基金supported by the Trans-century Training Programme Foundation for the Talents by the State Education Commission(now the Ministry of Education)of Chinathe key project No.01038 of the Ministry of Education of China
文摘Overpressure systems are widely developed in the central depression and paleo-uplift in the Yinggehai and Qiongdongnan basins. They can be divided into three types according to the origin of abnormally high formation pressure in the reservoirs, i.e. the autochthonous, vertically-transmitted and laterally-transmitted types. The autochthonous overpressure system results from rapid disequilibrium sediment loading and compaction. In the allochthonous overpressure system, the increase of fluid pressure in sandstone originates from the invasion of overpressured fluid flowing vertically or laterally through the conduit units. The autochthonous overpressure system occurs in the deep-lying strata of Neogene age in the central depression of the Yinggehai and Qiongdongnan basins. The vertically transmitted overpressure system is developed in the shallow strata of Late Miocene and Pliocene ages in the diapiric zone of the central Yinggehai basin, and the laterally transmitted overpressure system occurs in the Oligocene strata of paleo-uplifts, such as the structure of Ya-211 in the Qiongdongnan basin. The results indicate that the autochthonous overpressure system is generally a closed one, which is unfavorable for the migration and accumulation of hydrocarbons. In the allochthonous overpressure system, hydrocarbon accumulation depends on the relationship between the formation of overpressure systems and the spatial location and duration of hydrocarbon migration. The interval overlying the overpressure system is usually a favorable hydrocarbon accumulation zone if the duration of fluid expulsion coincides with that of hydrocarbon accumulation.
文摘The characteristics and distribution of faults in Yinggehai basin discussed in this paper reveal the structural effects of the overpressure fluid expulsion. The rapid subsidence and mud rich intervals of the marine rocks dominate the formation of the overpressure systems and the enormous volumes of the overpressure fluids in the basin. Triggered by some faults, the overpressure fluids were expulsed rapidly from the overpressure compartments to form a series of diapirs in the basin, resulting in the dense fractures or faults and folds in the limbs of diapirs. These fractures and faults provided the migration pathway for the vertical flow of hydrocarbons, so that the gas fields arising from this process might migrate upwards to the sandstone reservoir. Therefore, the hydrocarbon accumulations are usually located in the upper parts of diapiric structures.