We derive exact analytical expressions of time-evolving bare-state operators of level occupation numbers and the photon numbers for a composite system consisting of a three-level atom interacting with two modes of a q...We derive exact analytical expressions of time-evolving bare-state operators of level occupation numbers and the photon numbers for a composite system consisting of a three-level atom interacting with two modes of a quantized electromagnetic field in A configuration. These results demonstrate the oscillations with three-family frequencies for a nonzero detuning, which dramatically differ from the previous results showing only single-family Rabi oscillations.展开更多
We derive the analytical expression of microcavity-enhanced factor for third harmonic generation in terms of detunings, linewidths, and the Purcell factors of the relevant microcavity modes. It is suitable for microca...We derive the analytical expression of microcavity-enhanced factor for third harmonic generation in terms of detunings, linewidths, and the Purcell factors of the relevant microcavity modes. It is suitable for microcavities with any dimensions and arbitrary geometric shapes.展开更多
We present analytical results for the multiphoton squeezed states defined through nonlinear quadrature-dependent Bogoliubov transformations. These analytical results turn a nonlinear problem into an essentially linear...We present analytical results for the multiphoton squeezed states defined through nonlinear quadrature-dependent Bogoliubov transformations. These analytical results turn a nonlinear problem into an essentially linear one and they can be utilized to express explicitly the mean walues and deviations of the quadrature operators and the photon variables under the multiphoton states in terms of those quantities averaged over the standard squeezed states which only involves the quadrature-independent Bogoliubov transformation.展开更多
We present the explicit analytical expressions of the steady-state probability amplitudes and populations of atom levels in N-photon electromagnetically induced transparency for an arbitrary positive integer N.
In this paper, we develop a systematic and simple method to derive quasiparticle spectrum of the quantum degenerate Fermi gases within the framework of Hartree–Fock–Bogoliubov theory which turns a general nonlinear ...In this paper, we develop a systematic and simple method to derive quasiparticle spectrum of the quantum degenerate Fermi gases within the framework of Hartree–Fock–Bogoliubov theory which turns a general nonlinear two-body interaction Hamiltonian into a bilinear Hamiltonian by introducing certain self-consistent mean fields. Applying the approach, we obtain the quasi-particle spectrum of the model describing the superfluid phase transition that arises when a Feshbach resonance pairing occurs in a dilute Fermi gas in the presence of the magnetization fields and . When the gap parameter Δ is smaller than one or both of the magnetization fields, the spectrum manifests roton-type structure dramatically different from the spectrum in the absence of the magnetization fields.展开更多
文摘We derive exact analytical expressions of time-evolving bare-state operators of level occupation numbers and the photon numbers for a composite system consisting of a three-level atom interacting with two modes of a quantized electromagnetic field in A configuration. These results demonstrate the oscillations with three-family frequencies for a nonzero detuning, which dramatically differ from the previous results showing only single-family Rabi oscillations.
文摘We derive the analytical expression of microcavity-enhanced factor for third harmonic generation in terms of detunings, linewidths, and the Purcell factors of the relevant microcavity modes. It is suitable for microcavities with any dimensions and arbitrary geometric shapes.
文摘We present analytical results for the multiphoton squeezed states defined through nonlinear quadrature-dependent Bogoliubov transformations. These analytical results turn a nonlinear problem into an essentially linear one and they can be utilized to express explicitly the mean walues and deviations of the quadrature operators and the photon variables under the multiphoton states in terms of those quantities averaged over the standard squeezed states which only involves the quadrature-independent Bogoliubov transformation.
文摘We present the explicit analytical expressions of the steady-state probability amplitudes and populations of atom levels in N-photon electromagnetically induced transparency for an arbitrary positive integer N.
文摘In this paper, we develop a systematic and simple method to derive quasiparticle spectrum of the quantum degenerate Fermi gases within the framework of Hartree–Fock–Bogoliubov theory which turns a general nonlinear two-body interaction Hamiltonian into a bilinear Hamiltonian by introducing certain self-consistent mean fields. Applying the approach, we obtain the quasi-particle spectrum of the model describing the superfluid phase transition that arises when a Feshbach resonance pairing occurs in a dilute Fermi gas in the presence of the magnetization fields and . When the gap parameter Δ is smaller than one or both of the magnetization fields, the spectrum manifests roton-type structure dramatically different from the spectrum in the absence of the magnetization fields.