We prove that the inequality holds, when a m × n real matrix X = (xij) whose entries are not all equal to 0 satisfies Therefore we not only generalize the results of Horst Alzer [2] from non-negative matrix to re...We prove that the inequality holds, when a m × n real matrix X = (xij) whose entries are not all equal to 0 satisfies Therefore we not only generalize the results of Horst Alzer [2] from non-negative matrix to real matrix, but also complete a result of E R van Dam [1], which indicated that the best possible upper bound is equal to 1 for real matrix.展开更多
基金Supported by the Science Foundation of Educational Commission of Fujian Province (JA03157)Supported by the Scientific Research Item of Putian University(20042002)
文摘We prove that the inequality holds, when a m × n real matrix X = (xij) whose entries are not all equal to 0 satisfies Therefore we not only generalize the results of Horst Alzer [2] from non-negative matrix to real matrix, but also complete a result of E R van Dam [1], which indicated that the best possible upper bound is equal to 1 for real matrix.