Many experiments have demonstrated that resonant magnetic perturbation(RMP) can affect the turbulent transport at the edge of the tokamak. Through the Experimental Advanced Superconducting Tokamak(EAST) density modula...Many experiments have demonstrated that resonant magnetic perturbation(RMP) can affect the turbulent transport at the edge of the tokamak. Through the Experimental Advanced Superconducting Tokamak(EAST) density modulation experiment, the particle transport coefficients were calculated using the experimental data, and the result shows that the particle transport coefficients increase with RMP. In this study, the six-field two-fluid model in BOUT++ is used to simulate the transport before and after density pump-out induced by RMP,respectively referred as the case without RMP and the case with RMP. In the linear simulations,the instabilities generally decreases for cases with RMP. In the nonlinear simulation, ELM only appears in the case without RMP. Additionally, the particle transport coefficient was analyzed,and the result shows that the particle transport coefficient becomes larger for the case with RMP,which is consistent with the experimental conclusion. Moreover, its magnitude is comparable to the results calculated from experimental data.展开更多
Powder hot isostatic pressing(HIP) is an effective method to achieve near-net-shape manufacturing of high-quality complex thinwalled titanium alloy parts, and it has received extensive attention in recent years. Howev...Powder hot isostatic pressing(HIP) is an effective method to achieve near-net-shape manufacturing of high-quality complex thinwalled titanium alloy parts, and it has received extensive attention in recent years. However, there are few reports about the microstructure characteristics on the strengthening and toughening mechanisms of powder hot isostatic pressed(HIPed) titanium alloys. Therefore, TA15powder was prepared into alloy by HIP approach, which was used to explore the microstructure characteristics at different HIP temperatures and the corresponding tensile properties and fracture toughness. Results show that the fabricated alloy has a “basket-like structure” when the HIP temperature is below 950℃, consisting of lath clusters and surrounding small equiaxed grains belts. When the HIP temperature is higher than 950℃, the microstructure gradually transforms into the Widmanstatten structure, accompanied by a significant increase in grain size. The tensile strength and elongation are reduced from 948 MPa and 17.3% for the 910℃ specimen to 861 MPa and 10% for the 970℃ specimen.The corresponding tensile fracture mode changes from transcrystalline plastic fracture to mixed fracture including intercrystalline cleavage.The fracture toughness of the specimens increases from 82.64 MPa·m^(1/2)for the 910℃ specimen to 140.18 MPa·m^(1/2)for the 970℃ specimen.Specimens below 950℃ tend to form holes due to the prior particle boundaries(PPBs), which is not conducive to toughening. Specimens above 950℃ have high fracture toughness due to the crack deflection, crack branching, and shear plastic deformation of the Widmanstatten structure. This study provides a valid reference for the development of powder HIPed titanium alloy.展开更多
A new fuzzy adaptive control method is proposed for a class of strict feedback nonlinear systems with immeasurable states and full constraints.The fuzzy logic system is used to design the approximator,which deals with...A new fuzzy adaptive control method is proposed for a class of strict feedback nonlinear systems with immeasurable states and full constraints.The fuzzy logic system is used to design the approximator,which deals with uncertain and continuous functions in the process of backstepping design.The use of an integral barrier Lyapunov function not only ensures that all states are within the bounds of the constraint,but also mixes the states and errors to directly constrain the state,reducing the conservativeness of the constraint satisfaction condition.Considering that the states in most nonlinear systems are immeasurable,a fuzzy adaptive states observer is constructed to estimate the unknown states.Combined with adaptive backstepping technique,an adaptive fuzzy output feedback control method is proposed.The proposed control method ensures that all signals in the closed-loop system are bounded,and that the tracking error converges to a bounded tight set without violating the full state constraint.The simulation results prove the effectiveness of the proposed control scheme.展开更多
We couple a ladder-type three-level superconducting artificial atom to a cavity. Adjusting the artificial atom to make the cavity be resonant with the two upper levels, we then probe the lower two levels of the artifi...We couple a ladder-type three-level superconducting artificial atom to a cavity. Adjusting the artificial atom to make the cavity be resonant with the two upper levels, we then probe the lower two levels of the artificial atom. When driving the cavity to a coherent state, the probe spectrum shows energy level splitting induced by the quantized electromagnetic field in the cavity. This splitting size is related to the coupling strength between the cavity and the artificial atom and, thus, is fixed after the sample is fabricated. This is in contrast to the classical Autler-Townes splitting of a three-level system in which the splitting is proportional to the driving amplitude, which can be continuously changed. Our experiment results show the difference between the classical microwave driving field and the quantum field of the cavity.展开更多
Enormous progresses to understand the jamming transition have been driven via simulating purely repulsive particles which were somehow idealized in the past two decades. While the attractive systems are both theoretic...Enormous progresses to understand the jamming transition have been driven via simulating purely repulsive particles which were somehow idealized in the past two decades. While the attractive systems are both theoretical and practical compared with repulsive systems. By studying the statistics of rigid clusters, we find that the critical packing fraction φ_(c) varies linearly with attraction μ for different system sizes when the range of attraction is short. While for systems with long-range attractions, however, the slope of φ_(c) appears significantly different, which means that there are two distinct jamming scenarios. In this paper, we focus our main attention on short-range attractions scenario and define a new quantity named "short-range attraction susceptibility" χ_(p), which describes the degree of response of the probability of finding jammed states pjto short-range attraction strength μ. Our central results are that χ_(p) diverges in the thermodynamic limit as χ_(p) ∝|φ-φ_(c)^(∞)|^(-γ_(p)), where φ_(c)^(∞) is the packing fraction at the jamming transition for the infinite system in the absence of attraction. χ_(p) obeys scaling collapse with a scaling function in both two and three dimensions, illuminating that the jamming transition can be considered as a phase transition as proposed in previous work.展开更多
Green, biodegradable, and eco-friendly interface materials based on cellulose and its derivatives were prepared for organic solar cells(OSCs). In this work, calcium and two derivatives of cellulose with different carb...Green, biodegradable, and eco-friendly interface materials based on cellulose and its derivatives were prepared for organic solar cells(OSCs). In this work, calcium and two derivatives of cellulose with different carboxy acid groups, denoted as Cellulose-COOH and Cellulose-(COOH)n, were used as cathode interfacial layers of OSCs, and a blend of the low-band-gap semiconducting polymers thieno[3, 4-b]thiophene/benzodithiophene(PTB7)and [6, 6]-phenyl C71-butyric acid methyl ester(PC71BM) was chosen as the photoactive layer. OSCs were fabricated with a configuration of indiumdoped tin oxide(ITO)/poly(3, 4-ethylenedioxythiophene) : polystyrene sulfonate(PEDOT: PSS)/PTB7: PC71BM/Ca or Cellulose-COOH or Cellulose-(COOH)n/Al. As a result, the effect of cellulose-COOH was the best one among them, and the power conversion efficiency(PCE) reached 8.21%for the devices with cathode interfacial layer of Cellulose-COOH, which was better than that of OSCs using calcium as a modifier(PCE=7.95%). The favorable performance is attributed to the reduced work function and improved electron transfer caused by the introduction of carboxy cellulose between the active layer and the electrode. The developed technology shows great potential in accelerating the diversified applications of cellulose and producing cost-effective and eco-friendly interfaces for OSCs.展开更多
We study the fringe visibility and the which-path information(WPI) of a general Mach-Zehnder interferometer with an asymmetric beam splitter(BS). A minimum error measurement in the detector is used to extract the WPI....We study the fringe visibility and the which-path information(WPI) of a general Mach-Zehnder interferometer with an asymmetric beam splitter(BS). A minimum error measurement in the detector is used to extract the WPI. Both the fringe visibility V and the WPI I_(path) are affected by the initial state of the photon and the second asymmetric BS. The condition in which the WPI takes the maximum is obtained. The complementarity relationship V^2 + I_(path)~2 ≤ 1 is found, and the conditions for equality are also presented.展开更多
We study the fringe visibility and the distinguishability of a general Mach-Zehnder interferometer with an asymmetric beam splitter. Both the fringe visibility V and the distinguishability D are affected by the input ...We study the fringe visibility and the distinguishability of a general Mach-Zehnder interferometer with an asymmetric beam splitter. Both the fringe visibility V and the distinguishability D are affected by the input state of the particle characterized by the Bloch vector S =(S_x, S_y, S_z) and the second asymmetric beam splitter characterized by the paramterβ. For the total system is initially in a pure state, it is found that the fringe visibility reaches the upper bound and the distinguishability reaches the lower bound when cosβ=-S_x, The fringe visibility obtain the maximum only if S_x = 0 and β = π/2 when the input particle is initially in a mixed state. The complementary relationship V^2 +D^2 ≤ 1 is proved in a general Mach-Zehnder interferometer with an asymmetric beam splitter, and the conditions for the equality are also presented.展开更多
After decades of theoretical studies,the rich phase states of active matter and cluster kinetic processes are still of research interest.How to efficiently calculate the dynamical processes under their complex conditi...After decades of theoretical studies,the rich phase states of active matter and cluster kinetic processes are still of research interest.How to efficiently calculate the dynamical processes under their complex conditions becomes an open problem.Recently,machine learning methods have been proposed to predict the degree of coherence of active matter systems.In this way,the phase transition process of the system is quantified and studied.In this paper,we use graph network as a powerful model to determine the evolution of active matter with variable individual velocities solely based on the initial position and state of the particles.The graph network accurately predicts the order parameters of the system in different scale models with different individual velocities,noise and density to effectively evaluate the effect of diverse condition.Compared with the classical physical deduction method,we demonstrate that graph network prediction is excellent,which could save significantly computing resources and time.In addition to active matter,our method can be applied widely to other large-scale physical systems.展开更多
Colloidal Pb Se nanocrystals(NCs)have gained considerable attention due to their efficient carrier multiplication and emissions across near-infrared and short-wavelength infrared spectral ranges.However,the fast degra...Colloidal Pb Se nanocrystals(NCs)have gained considerable attention due to their efficient carrier multiplication and emissions across near-infrared and short-wavelength infrared spectral ranges.However,the fast degradation of colloidal Pb Se NCs in ambient conditions hampers their widespread applications in infrared optoelectronics.It is well-known that the inorganic thick-shell over core improves the stability of NCs.Here,we present the synthesis of Pb Se/Pb S core/shell NCs showing wide spectral tunability,in which the molar ratio of lead(Pb)and sulfur(S)precursors,and the concentration of sulfur and Pb Se NCs in solvent have a significant effect on the efficient Pb S shell growth.The infrared light-emitting diodes(IR-LEDs)fabricated with the Pb Se/Pb S core/shell NCs exhibit an external quantum efficiency(EQE)of 1.3%at 1280 nm.The ligand exchange to optimize the distance between NCs and chloride treatment are important processes for achieving high performance on Pb Se/Pb S NC-LEDs.Our results provide evidence for the promising potential of Pb Se/Pb S NCs over the wide range of infrared optoelectronic applications.展开更多
By embedding secret data into cover images,image steganography can produce non-discriminable stego-images.The turtle shell model for data hiding is an excellent method that uses a reference matrix to make a good balan...By embedding secret data into cover images,image steganography can produce non-discriminable stego-images.The turtle shell model for data hiding is an excellent method that uses a reference matrix to make a good balance between image quality and embedding capacity.However,increasing the embedding capacity by extending the area of basic structures of the turtle shell model usually leads to severe degradation of image quality.In this research,we innovatively extend the basic structure of the turtle shell model into a three-dimensional(3D)space.Some intrinsic properties of the original turtle shell model are well preserved in the 3D version.Theoretic analysis shows that the new proposed models have good performance both in the image quality and in the complexity of the reference matrix.Our experimental results justify the theoretic conclusions.展开更多
A mathematical model for one-dimensional heat transfer in pipelines undergoing freezing induced by liquid nitrogen is elaborated.The basic premise of this technology is that the content within a pipeline is frozen to ...A mathematical model for one-dimensional heat transfer in pipelines undergoing freezing induced by liquid nitrogen is elaborated.The basic premise of this technology is that the content within a pipeline is frozen to form a plug or two plugs at a position upstream and downstream from a location where work a modification or a repair must be executed.Based on the variable separation method,the present model aims to solve the related coupled heat conduction and moving-boundary phase change problem.An experiment with a 219 mm long pipe,where water was taken as the plugging agent,is presented to demonstrate the relevance and reliability of the proposed model(results show that the error is within 18%).Thereafter,the model is applied to predict the cooling and freezing process of pipelines with different inner diameters at different liquid nitrogen refrigeration temperatures when water is used as the plugging agent.展开更多
In this study, a new mass model involving superheat, initial temperature, liquid height, evaporator diameter, and flashing time is established to describe the flash evaporation process of water film. Of 469 sets of fl...In this study, a new mass model involving superheat, initial temperature, liquid height, evaporator diameter, and flashing time is established to describe the flash evaporation process of water film. Of 469 sets of flash experimental data from three previous researches, 305 sets were applied to optimize parameters, and the other 164 sets were used to verify the practicability of the model. The results showed that the mean relative error between the literature data and the model values was less than 16.3%, and the model statistics proved that the model was well-posed. Then, the kinetic model was obtained using the time derivative of the new mass model. Computational fluid dynamics simulation of water film flash evaporation was studied based on a user-defined function program of the new evaporation kinetic model. The new kinetic model shows more consistency with the experimental phenomena in terms of evaporated mass and temperature compared with the evaporation–condensation model in Fluent software and Gopalakrishna's model. This new kinetic model can be extended to describe the flash process of water solution under other conditions.展开更多
[Objectives]The purpose was to establish an induction system for friable callus of Hedera nepalensis var.sinensis with different parts.[Methods]By screening the most suitable explant and adjusting the hormone ratio of...[Objectives]The purpose was to establish an induction system for friable callus of Hedera nepalensis var.sinensis with different parts.[Methods]By screening the most suitable explant and adjusting the hormone ratio of medium,friable calli of H.nepalensis var.sinensis were induced.[Results]The calli could be induced from leaves,petioles and stem segments,but the ideal explant was stem segments,with induction rate reaching 98%.The optimal medium for callus proliferation was MS+0.5 mg/L KT+1.0 mg/L 2,4-D+30.0 g/L sucrose.After 3-4 generations of subculture on MS+0.5 mg/L BA+1.0 mg/L 2,4-D+30.0 g/L sucrose,favorable friable calli of H.nepalensis var.sinensis were obtained.[Conclusions]The friable calli induced in this experiment can lay a foundation for in-vitro regeneration and cellular secondary metabolite production of H.nepalensis var.sinensis.展开更多
With seeds as experimental materials,MS was used as the basic medium to combine different species and concentrations of auxin and mitogen for proliferation,elongation and rooting culture. The best combination of mediu...With seeds as experimental materials,MS was used as the basic medium to combine different species and concentrations of auxin and mitogen for proliferation,elongation and rooting culture. The best combination of medium and the most suitable medium were selected. The results showed that the best formula for the medium was MS + 0. 5 mg/L BA + 0. 5 mg/L IAA + 30 g/L sucrose in the proliferation culture,MS + 0. 25 mg/L BA + 0. 5 mg/L IAA + 30 g/L sucrose in the elongation culture,and MS + 0. 5 mg/L IAA + 20 g/L sucrose in the rooting culture respectively. The experimental results will be applied in the rapid propagation and breeding of high-quality seedlings of Platycodon grandiflorus.展开更多
The transformation of social services is one of the key tasks for the undergraduate university changing to be an applied university. This article made a text analysis on the news about social service from the column o...The transformation of social services is one of the key tasks for the undergraduate university changing to be an applied university. This article made a text analysis on the news about social service from the column of "university events”. It shows that the social service of newly-building undergraduate university has distinctive features and has an orientation of "localness, application, openness”, which is a natural advantage. It also has the following problems: too many plans lacking systematicness, core competence and sense of participation, lower service level, out-of-date philosophy and so on. It is suggested that newly-building undergraduate university make an inner-driven transformation, with direct and active service to others.展开更多
基金supported by the National Magnetic Confinement Fusion Program of China(No.2019YFE03090200)by National Natural Science Foundation of China(Nos.11975231,12175277 and 12305249).
文摘Many experiments have demonstrated that resonant magnetic perturbation(RMP) can affect the turbulent transport at the edge of the tokamak. Through the Experimental Advanced Superconducting Tokamak(EAST) density modulation experiment, the particle transport coefficients were calculated using the experimental data, and the result shows that the particle transport coefficients increase with RMP. In this study, the six-field two-fluid model in BOUT++ is used to simulate the transport before and after density pump-out induced by RMP,respectively referred as the case without RMP and the case with RMP. In the linear simulations,the instabilities generally decreases for cases with RMP. In the nonlinear simulation, ELM only appears in the case without RMP. Additionally, the particle transport coefficient was analyzed,and the result shows that the particle transport coefficient becomes larger for the case with RMP,which is consistent with the experimental conclusion. Moreover, its magnitude is comparable to the results calculated from experimental data.
基金financially supported by the National Natural Science Foundation of China (Nos. 51874037 and 51922004)the Beijing Natural Science Foundation (No. 2212035)+1 种基金the Fundamental Research Funds for the Central Universities (No. FRF-TP-19005C1Z)the National Defense Basic Research Project (No. JCKY2017213004)。
文摘Powder hot isostatic pressing(HIP) is an effective method to achieve near-net-shape manufacturing of high-quality complex thinwalled titanium alloy parts, and it has received extensive attention in recent years. However, there are few reports about the microstructure characteristics on the strengthening and toughening mechanisms of powder hot isostatic pressed(HIPed) titanium alloys. Therefore, TA15powder was prepared into alloy by HIP approach, which was used to explore the microstructure characteristics at different HIP temperatures and the corresponding tensile properties and fracture toughness. Results show that the fabricated alloy has a “basket-like structure” when the HIP temperature is below 950℃, consisting of lath clusters and surrounding small equiaxed grains belts. When the HIP temperature is higher than 950℃, the microstructure gradually transforms into the Widmanstatten structure, accompanied by a significant increase in grain size. The tensile strength and elongation are reduced from 948 MPa and 17.3% for the 910℃ specimen to 861 MPa and 10% for the 970℃ specimen.The corresponding tensile fracture mode changes from transcrystalline plastic fracture to mixed fracture including intercrystalline cleavage.The fracture toughness of the specimens increases from 82.64 MPa·m^(1/2)for the 910℃ specimen to 140.18 MPa·m^(1/2)for the 970℃ specimen.Specimens below 950℃ tend to form holes due to the prior particle boundaries(PPBs), which is not conducive to toughening. Specimens above 950℃ have high fracture toughness due to the crack deflection, crack branching, and shear plastic deformation of the Widmanstatten structure. This study provides a valid reference for the development of powder HIPed titanium alloy.
基金supported in part by the National Natural Science Foundation of China(6202530361973147)the LiaoNing Revitalization Talents Program(XLYC1907050)。
文摘A new fuzzy adaptive control method is proposed for a class of strict feedback nonlinear systems with immeasurable states and full constraints.The fuzzy logic system is used to design the approximator,which deals with uncertain and continuous functions in the process of backstepping design.The use of an integral barrier Lyapunov function not only ensures that all states are within the bounds of the constraint,but also mixes the states and errors to directly constrain the state,reducing the conservativeness of the constraint satisfaction condition.Considering that the states in most nonlinear systems are immeasurable,a fuzzy adaptive states observer is constructed to estimate the unknown states.Combined with adaptive backstepping technique,an adaptive fuzzy output feedback control method is proposed.The proposed control method ensures that all signals in the closed-loop system are bounded,and that the tracking error converges to a bounded tight set without violating the full state constraint.The simulation results prove the effectiveness of the proposed control scheme.
基金Project supported by the Science Funds from the Ministry of Science and Technology of China(Grant Nos.2014CB921401,2017YFA0304300,2014CB921202,and 2016YFA0300601)the National Natural Science Foundation of China(Grant No.11674376)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB07010300)
文摘We couple a ladder-type three-level superconducting artificial atom to a cavity. Adjusting the artificial atom to make the cavity be resonant with the two upper levels, we then probe the lower two levels of the artificial atom. When driving the cavity to a coherent state, the probe spectrum shows energy level splitting induced by the quantized electromagnetic field in the cavity. This splitting size is related to the coupling strength between the cavity and the artificial atom and, thus, is fixed after the sample is fabricated. This is in contrast to the classical Autler-Townes splitting of a three-level system in which the splitting is proportional to the driving amplitude, which can be continuously changed. Our experiment results show the difference between the classical microwave driving field and the quantum field of the cavity.
基金supported by the National Natural Science Foundation of China (Grant No. 11702289)Key Core Technology and Generic Technology Research and Development Project of Shanxi Province,China (Grant No. 2020XXX013)the National Key Research and Development Project of China。
文摘Enormous progresses to understand the jamming transition have been driven via simulating purely repulsive particles which were somehow idealized in the past two decades. While the attractive systems are both theoretical and practical compared with repulsive systems. By studying the statistics of rigid clusters, we find that the critical packing fraction φ_(c) varies linearly with attraction μ for different system sizes when the range of attraction is short. While for systems with long-range attractions, however, the slope of φ_(c) appears significantly different, which means that there are two distinct jamming scenarios. In this paper, we focus our main attention on short-range attractions scenario and define a new quantity named "short-range attraction susceptibility" χ_(p), which describes the degree of response of the probability of finding jammed states pjto short-range attraction strength μ. Our central results are that χ_(p) diverges in the thermodynamic limit as χ_(p) ∝|φ-φ_(c)^(∞)|^(-γ_(p)), where φ_(c)^(∞) is the packing fraction at the jamming transition for the infinite system in the absence of attraction. χ_(p) obeys scaling collapse with a scaling function in both two and three dimensions, illuminating that the jamming transition can be considered as a phase transition as proposed in previous work.
基金financially supported by the National Natural Science Foundation of China(21674123,31700520)National Natural Science Foundation of Fujian Province(2018J01592)+1 种基金Project of “100 People Planning in Fujian Province”,New Century Excellent Talents in Fujian Province University(KLa17009A)International Cooperation Project of Fujian Agriculture and Forestry University(KXGH17003).
文摘Green, biodegradable, and eco-friendly interface materials based on cellulose and its derivatives were prepared for organic solar cells(OSCs). In this work, calcium and two derivatives of cellulose with different carboxy acid groups, denoted as Cellulose-COOH and Cellulose-(COOH)n, were used as cathode interfacial layers of OSCs, and a blend of the low-band-gap semiconducting polymers thieno[3, 4-b]thiophene/benzodithiophene(PTB7)and [6, 6]-phenyl C71-butyric acid methyl ester(PC71BM) was chosen as the photoactive layer. OSCs were fabricated with a configuration of indiumdoped tin oxide(ITO)/poly(3, 4-ethylenedioxythiophene) : polystyrene sulfonate(PEDOT: PSS)/PTB7: PC71BM/Ca or Cellulose-COOH or Cellulose-(COOH)n/Al. As a result, the effect of cellulose-COOH was the best one among them, and the power conversion efficiency(PCE) reached 8.21%for the devices with cathode interfacial layer of Cellulose-COOH, which was better than that of OSCs using calcium as a modifier(PCE=7.95%). The favorable performance is attributed to the reduced work function and improved electron transfer caused by the introduction of carboxy cellulose between the active layer and the electrode. The developed technology shows great potential in accelerating the diversified applications of cellulose and producing cost-effective and eco-friendly interfaces for OSCs.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11434011 and 11575058
文摘We study the fringe visibility and the which-path information(WPI) of a general Mach-Zehnder interferometer with an asymmetric beam splitter(BS). A minimum error measurement in the detector is used to extract the WPI. Both the fringe visibility V and the WPI I_(path) are affected by the initial state of the photon and the second asymmetric BS. The condition in which the WPI takes the maximum is obtained. The complementarity relationship V^2 + I_(path)~2 ≤ 1 is found, and the conditions for equality are also presented.
基金supported by the National Natural Science Foundation of China(Grant Nos.11434011,11575058,and 61833010)the "Science and Technology Innovation Platform and Talent Plan" Excellent Talent Award of Hunan Province,China(Grant No.2017XK2021)+1 种基金the Science Funds from the Ministry of Science and Technology of China(Grant Nos.2017YFA0304300 and 2016YFA0300601)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB28000000)
文摘We study the fringe visibility and the distinguishability of a general Mach-Zehnder interferometer with an asymmetric beam splitter. Both the fringe visibility V and the distinguishability D are affected by the input state of the particle characterized by the Bloch vector S =(S_x, S_y, S_z) and the second asymmetric beam splitter characterized by the paramterβ. For the total system is initially in a pure state, it is found that the fringe visibility reaches the upper bound and the distinguishability reaches the lower bound when cosβ=-S_x, The fringe visibility obtain the maximum only if S_x = 0 and β = π/2 when the input particle is initially in a mixed state. The complementary relationship V^2 +D^2 ≤ 1 is proved in a general Mach-Zehnder interferometer with an asymmetric beam splitter, and the conditions for the equality are also presented.
文摘After decades of theoretical studies,the rich phase states of active matter and cluster kinetic processes are still of research interest.How to efficiently calculate the dynamical processes under their complex conditions becomes an open problem.Recently,machine learning methods have been proposed to predict the degree of coherence of active matter systems.In this way,the phase transition process of the system is quantified and studied.In this paper,we use graph network as a powerful model to determine the evolution of active matter with variable individual velocities solely based on the initial position and state of the particles.The graph network accurately predicts the order parameters of the system in different scale models with different individual velocities,noise and density to effectively evaluate the effect of diverse condition.Compared with the classical physical deduction method,we demonstrate that graph network prediction is excellent,which could save significantly computing resources and time.In addition to active matter,our method can be applied widely to other large-scale physical systems.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0401702)the National Natural Science Foundation of China(Grant Nos.61674074 and 61405089)+6 种基金Development and Reform Commission of Shenzhen Project,China(Grant No.[2017]1395)Shenzhen Peacock Team Project,China(Grant No.KQTD2016030111203005)Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting,China(Grant No.ZDSYS201707281632549)Guangdong Province’s Key R&D Program:Micro-LED Display and Ultra-high Brightness Micro-display Technology,China(Grant No.2019B010925001)Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting,China(Grant No.2017KSYS007)Distinguished Young Scholar of National Natural Science Foundation of Guangdong,China(Grant No.2017B030306010)the start-up fund from Southern University of Science and Technology,Shenzhen,China
文摘Colloidal Pb Se nanocrystals(NCs)have gained considerable attention due to their efficient carrier multiplication and emissions across near-infrared and short-wavelength infrared spectral ranges.However,the fast degradation of colloidal Pb Se NCs in ambient conditions hampers their widespread applications in infrared optoelectronics.It is well-known that the inorganic thick-shell over core improves the stability of NCs.Here,we present the synthesis of Pb Se/Pb S core/shell NCs showing wide spectral tunability,in which the molar ratio of lead(Pb)and sulfur(S)precursors,and the concentration of sulfur and Pb Se NCs in solvent have a significant effect on the efficient Pb S shell growth.The infrared light-emitting diodes(IR-LEDs)fabricated with the Pb Se/Pb S core/shell NCs exhibit an external quantum efficiency(EQE)of 1.3%at 1280 nm.The ligand exchange to optimize the distance between NCs and chloride treatment are important processes for achieving high performance on Pb Se/Pb S NC-LEDs.Our results provide evidence for the promising potential of Pb Se/Pb S NCs over the wide range of infrared optoelectronic applications.
文摘By embedding secret data into cover images,image steganography can produce non-discriminable stego-images.The turtle shell model for data hiding is an excellent method that uses a reference matrix to make a good balance between image quality and embedding capacity.However,increasing the embedding capacity by extending the area of basic structures of the turtle shell model usually leads to severe degradation of image quality.In this research,we innovatively extend the basic structure of the turtle shell model into a three-dimensional(3D)space.Some intrinsic properties of the original turtle shell model are well preserved in the 3D version.Theoretic analysis shows that the new proposed models have good performance both in the image quality and in the complexity of the reference matrix.Our experimental results justify the theoretic conclusions.
文摘A mathematical model for one-dimensional heat transfer in pipelines undergoing freezing induced by liquid nitrogen is elaborated.The basic premise of this technology is that the content within a pipeline is frozen to form a plug or two plugs at a position upstream and downstream from a location where work a modification or a repair must be executed.Based on the variable separation method,the present model aims to solve the related coupled heat conduction and moving-boundary phase change problem.An experiment with a 219 mm long pipe,where water was taken as the plugging agent,is presented to demonstrate the relevance and reliability of the proposed model(results show that the error is within 18%).Thereafter,the model is applied to predict the cooling and freezing process of pipelines with different inner diameters at different liquid nitrogen refrigeration temperatures when water is used as the plugging agent.
基金supported by the Scientific Research Special Fund of Marine Public Welfare Industry(No.20140508)National Natural Science Foundation of China(No.51478308)Natural Science Foundation of Tianjin(No.14JCYBJC23300)
文摘In this study, a new mass model involving superheat, initial temperature, liquid height, evaporator diameter, and flashing time is established to describe the flash evaporation process of water film. Of 469 sets of flash experimental data from three previous researches, 305 sets were applied to optimize parameters, and the other 164 sets were used to verify the practicability of the model. The results showed that the mean relative error between the literature data and the model values was less than 16.3%, and the model statistics proved that the model was well-posed. Then, the kinetic model was obtained using the time derivative of the new mass model. Computational fluid dynamics simulation of water film flash evaporation was studied based on a user-defined function program of the new evaporation kinetic model. The new kinetic model shows more consistency with the experimental phenomena in terms of evaporated mass and temperature compared with the evaporation–condensation model in Fluent software and Gopalakrishna's model. This new kinetic model can be extended to describe the flash process of water solution under other conditions.
基金Tianjin Science and Technology Plan Project(18ZXBFNC00370)Industrial Innovation and Entrepreneurship Team Project of Hebei Province(199A2905H)Fund of Central Government for Guiding Science and Technology Development in Hebei Province(206Z6303G).
文摘[Objectives]The purpose was to establish an induction system for friable callus of Hedera nepalensis var.sinensis with different parts.[Methods]By screening the most suitable explant and adjusting the hormone ratio of medium,friable calli of H.nepalensis var.sinensis were induced.[Results]The calli could be induced from leaves,petioles and stem segments,but the ideal explant was stem segments,with induction rate reaching 98%.The optimal medium for callus proliferation was MS+0.5 mg/L KT+1.0 mg/L 2,4-D+30.0 g/L sucrose.After 3-4 generations of subculture on MS+0.5 mg/L BA+1.0 mg/L 2,4-D+30.0 g/L sucrose,favorable friable calli of H.nepalensis var.sinensis were obtained.[Conclusions]The friable calli induced in this experiment can lay a foundation for in-vitro regeneration and cellular secondary metabolite production of H.nepalensis var.sinensis.
基金Supported by Science and Technology Planning Project of Tianjin City,China(17JCYBJC29800,16PTZSTG00020)
文摘With seeds as experimental materials,MS was used as the basic medium to combine different species and concentrations of auxin and mitogen for proliferation,elongation and rooting culture. The best combination of medium and the most suitable medium were selected. The results showed that the best formula for the medium was MS + 0. 5 mg/L BA + 0. 5 mg/L IAA + 30 g/L sucrose in the proliferation culture,MS + 0. 25 mg/L BA + 0. 5 mg/L IAA + 30 g/L sucrose in the elongation culture,and MS + 0. 5 mg/L IAA + 20 g/L sucrose in the rooting culture respectively. The experimental results will be applied in the rapid propagation and breeding of high-quality seedlings of Platycodon grandiflorus.
文摘The transformation of social services is one of the key tasks for the undergraduate university changing to be an applied university. This article made a text analysis on the news about social service from the column of "university events”. It shows that the social service of newly-building undergraduate university has distinctive features and has an orientation of "localness, application, openness”, which is a natural advantage. It also has the following problems: too many plans lacking systematicness, core competence and sense of participation, lower service level, out-of-date philosophy and so on. It is suggested that newly-building undergraduate university make an inner-driven transformation, with direct and active service to others.