Mg-xLi-Al alloys with Mn addition from 0.2% to 1.5 % by wt. were produced and studied. The density of the alloys is very low, between 1.21 g/cm3 and 1.64 g/cm3, while the microstructures change from single α-, (α+β...Mg-xLi-Al alloys with Mn addition from 0.2% to 1.5 % by wt. were produced and studied. The density of the alloys is very low, between 1.21 g/cm3 and 1.64 g/cm3, while the microstructures change from single α-, (α+β)-, to single β-phase with lithium content rising from 5 % to 22 % by wt. The main alloy studied was LA92 alloy with Mn addition. The results of the tensile tests show that the strength decreases with increasing lithium content, while the elongation increases sharply, and the UTS and YS rise by 26.8% and 22.7% respectively, when 0.5 % by wt. Mn is added. It is also known, by microstructure observation, SEM with EDS and X-ray analysis, that adding Mn can produce some new hard phases in the alloy, which may worsen the tensile properties.展开更多
Electromagnetic separation of the iron-rich phase inclusions from Al alloy was investigated. The influencing parameters including magnetic induction density, the section shape of the separating channel and the length ...Electromagnetic separation of the iron-rich phase inclusions from Al alloy was investigated. The influencing parameters including magnetic induction density, the section shape of the separating channel and the length of influential loop of the metal melt on the separation efficiency of iron-rich phase inclusions were studied. The results show that when the proper magnetic induction density (B=0.3T) is applied, rectangle separating channel is used, and the influential loop of the metal melt is long, high separating efficiency of the iron-rich phase inclusions can be obtained.展开更多
文摘Mg-xLi-Al alloys with Mn addition from 0.2% to 1.5 % by wt. were produced and studied. The density of the alloys is very low, between 1.21 g/cm3 and 1.64 g/cm3, while the microstructures change from single α-, (α+β)-, to single β-phase with lithium content rising from 5 % to 22 % by wt. The main alloy studied was LA92 alloy with Mn addition. The results of the tensile tests show that the strength decreases with increasing lithium content, while the elongation increases sharply, and the UTS and YS rise by 26.8% and 22.7% respectively, when 0.5 % by wt. Mn is added. It is also known, by microstructure observation, SEM with EDS and X-ray analysis, that adding Mn can produce some new hard phases in the alloy, which may worsen the tensile properties.
基金Foundation item: project (59774017) supported by NationalNatureScience Found, China project (G199906490-4) supported by Na-tionalKey FundamentalResearch and Developing Program, China
文摘Electromagnetic separation of the iron-rich phase inclusions from Al alloy was investigated. The influencing parameters including magnetic induction density, the section shape of the separating channel and the length of influential loop of the metal melt on the separation efficiency of iron-rich phase inclusions were studied. The results show that when the proper magnetic induction density (B=0.3T) is applied, rectangle separating channel is used, and the influential loop of the metal melt is long, high separating efficiency of the iron-rich phase inclusions can be obtained.