Sulfur dioxide (SO2) and nitrogen oxide (NOx) in flue gas can be removed by combining microwave induced catalysis and adsorption on activated carbon. The reaction mechanisms of desulfurization and denitrification ...Sulfur dioxide (SO2) and nitrogen oxide (NOx) in flue gas can be removed by combining microwave induced catalysis and adsorption on activated carbon. The reaction mechanisms of desulfurization and denitrification by microwave irradiation were analyzed based on the measurement of reaction products. Thermodynamic parameters for desulfurization and denitrification by thermal-carbon reduction were predicted according to the principles of thermodynamics. The experimental results indicated that the desulfurization and denitrification reaction processes include three reaction stages: slow reaction zone, transitional zone and rapid reaction zone. In high temperature zone, activation energies for the reduction of SO2 and nitrogen monoxide (NO) are 30.69 and 24.06 kJ mo1-1, respectively. This study shows that microwave can effectively enhance the removal of pollutants through its heating effect and the induced catalysis.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 50976035)
文摘Sulfur dioxide (SO2) and nitrogen oxide (NOx) in flue gas can be removed by combining microwave induced catalysis and adsorption on activated carbon. The reaction mechanisms of desulfurization and denitrification by microwave irradiation were analyzed based on the measurement of reaction products. Thermodynamic parameters for desulfurization and denitrification by thermal-carbon reduction were predicted according to the principles of thermodynamics. The experimental results indicated that the desulfurization and denitrification reaction processes include three reaction stages: slow reaction zone, transitional zone and rapid reaction zone. In high temperature zone, activation energies for the reduction of SO2 and nitrogen monoxide (NO) are 30.69 and 24.06 kJ mo1-1, respectively. This study shows that microwave can effectively enhance the removal of pollutants through its heating effect and the induced catalysis.