A new biped robot with a triangle configuration is presented and it is a planar closed chain mechanism. The scalability of three sides of the triangle is realized by three actuated prismatic joints. The three vertexes...A new biped robot with a triangle configuration is presented and it is a planar closed chain mechanism. The scalability of three sides of the triangle is realized by three actuated prismatic joints. The three vertexes of the triangle are centers of three passive revolute joints coincidently. The biped mechanism for straight walking is proposed and its walking principle and mobility are explained. The static stability and the height and span of one step are analyzed. Kinematic analysis is performed to plan the gaits of walking on an even floor and going upstairs. A prototype is developed and experiments are carried out to validate the straight walking gait. Two additional revolute joints are added to form a modified biped robot which can follow the instruction of turning around. The turning ability is verified by experiments. As a new member of biped robots, its triangle configuration is used to impart geometry knowledge. Because of its high stiffness, some potential applications are on the way.展开更多
Highlighting the Time,Culture and Identity cross-disciplinary project conducted between the Science Museum in London,the Palace Museum in Beijing,academics at Beijing Jiaotong University and the Institute for the Hist...Highlighting the Time,Culture and Identity cross-disciplinary project conducted between the Science Museum in London,the Palace Museum in Beijing,academics at Beijing Jiaotong University and the Institute for the History of Natural Sciences,and creative industries practitioners in China and the UK,this introduction highlights the key impacts of the research.As well as creating the practical output of a digital museum experience focused on the workings of the Country Scene clock,the research brought a range of wider impacts,including a change in understanding between collaborators,capacity-building skills,research process development and a change in attitude.The papers of this supplementary issue reflect some of the range of impacts of the work of our collaborators.展开更多
In rolling experiments,the performances of spider-like robot are limited greatly by its motors’driving ability;meanwhile,the ground reaction forces are so great that they damaged the rods.In this paper,we solve above...In rolling experiments,the performances of spider-like robot are limited greatly by its motors’driving ability;meanwhile,the ground reaction forces are so great that they damaged the rods.In this paper,we solve above problems both mechanically and by control.Firstly,we design the parameters of the central pattern generator(CPG)network based on the kinematics of the robot to enable a smooth rolling trajectory.And we also analyze the kinematic rolling and dynamic rolling briefly.Secondly,we add torsion springs to the passive joints of the spider-like robot aiming to make use of its energy storage capacity to compensate the insufficient torque.The simulation results show that the optimized CPG control parameters can reduce the fluctuation of the mass center and the ground reaction forces.The torsion spring can reduce the peak torque requirements of the actuated joints by 50%.展开更多
基金supported by Geometry Robots for Science and Technology Education Exhibits (Beijing Municipal Commission of Education)Program for New Century Excellent Talents in University (Grant No.NCET-07-0063)+2 种基金National Natural Science Foundation of China (Grant No. 50875018)Beijing Municipal Natural Science Foundation of China (Grant No. 3093025)Science Foundation of Beijing Jiaotong University (Grant No. 2009JBZ001-1)
文摘A new biped robot with a triangle configuration is presented and it is a planar closed chain mechanism. The scalability of three sides of the triangle is realized by three actuated prismatic joints. The three vertexes of the triangle are centers of three passive revolute joints coincidently. The biped mechanism for straight walking is proposed and its walking principle and mobility are explained. The static stability and the height and span of one step are analyzed. Kinematic analysis is performed to plan the gaits of walking on an even floor and going upstairs. A prototype is developed and experiments are carried out to validate the straight walking gait. Two additional revolute joints are added to form a modified biped robot which can follow the instruction of turning around. The turning ability is verified by experiments. As a new member of biped robots, its triangle configuration is used to impart geometry knowledge. Because of its high stiffness, some potential applications are on the way.
基金the UK Arts and Humanities Research Councilthe Newton Fund
文摘Highlighting the Time,Culture and Identity cross-disciplinary project conducted between the Science Museum in London,the Palace Museum in Beijing,academics at Beijing Jiaotong University and the Institute for the History of Natural Sciences,and creative industries practitioners in China and the UK,this introduction highlights the key impacts of the research.As well as creating the practical output of a digital museum experience focused on the workings of the Country Scene clock,the research brought a range of wider impacts,including a change in understanding between collaborators,capacity-building skills,research process development and a change in attitude.The papers of this supplementary issue reflect some of the range of impacts of the work of our collaborators.
基金the Fundamental Research Funds for the Central Universities of China(No.M15JB00250)。
文摘In rolling experiments,the performances of spider-like robot are limited greatly by its motors’driving ability;meanwhile,the ground reaction forces are so great that they damaged the rods.In this paper,we solve above problems both mechanically and by control.Firstly,we design the parameters of the central pattern generator(CPG)network based on the kinematics of the robot to enable a smooth rolling trajectory.And we also analyze the kinematic rolling and dynamic rolling briefly.Secondly,we add torsion springs to the passive joints of the spider-like robot aiming to make use of its energy storage capacity to compensate the insufficient torque.The simulation results show that the optimized CPG control parameters can reduce the fluctuation of the mass center and the ground reaction forces.The torsion spring can reduce the peak torque requirements of the actuated joints by 50%.