Two kinds of water-soluble metallophthalocyanines (Mt2Pc2), binuclear cobalt phthalocyanine (Co2Pc2) and binuclear ferric phthalocyanine (Fe2Pc2), were supported on silk fibers and modified viscose fibers to con...Two kinds of water-soluble metallophthalocyanines (Mt2Pc2), binuclear cobalt phthalocyanine (Co2Pc2) and binuclear ferric phthalocyanine (Fe2Pc2), were supported on silk fibers and modified viscose fibers to construct bioactive fibers of mimic enzyme, Mt2Pc2 used as the active center of bioactive fibers, viscose and silk fibers as the microenvironments. The catalytic oxidation ability of bioactive fibers on the malodors of methanthiol and hydrogen sulfide was investigated at room temperature. The experimental results demonstrated that the catalytic activity of such bioactive fibers was tightly correlative to the types of bioactive fibers and substrates.展开更多
In this paper, zinc tetraaminophthalocyanine (Zn-APc) was immobilized on cellulosic fiber by covalent bond to obtain a novel cellulosic fiber supported metallophthalocyanine, named Zn-TDTAPc-F. At pH 11, upon visible ...In this paper, zinc tetraaminophthalocyanine (Zn-APc) was immobilized on cellulosic fiber by covalent bond to obtain a novel cellulosic fiber supported metallophthalocyanine, named Zn-TDTAPc-F. At pH 11, upon visible light irradiation for 6 h in the presence of O2, Zn-TDTAPc-F was found to be highly effective for the degradation of phenol in aqueous solution, and the degradation rate of phenol was more than 95%. HPLC was used to confirm formic acid, fumaric acid and maleic acid as its main degradation products.展开更多
A novel reactive metallophthalocyanine derivative, zinc tetra(2,4-dichloro-1,3,5-triazine)aminophthalocyanine (Zn-TDTAPc), was prepared and immobilized on poly(N-isopropylacrylamide) (PNIPAAm) by covalent bonding to o...A novel reactive metallophthalocyanine derivative, zinc tetra(2,4-dichloro-1,3,5-triazine)aminophthalocyanine (Zn-TDTAPc), was prepared and immobilized on poly(N-isopropylacrylamide) (PNIPAAm) by covalent bonding to obtain a thermosensitive polymer (Zn-TDTAPc-g-PNIPAAm). Compared with zinc tetraaminophthalocyanine (Zn-TAPc), Zn-TDTAPc-g-PNIPAAm exhibits excellent solubility in water and in most organic solvents. Furthermore, it has a special thermosensitive property in water and the lower critical solution temperature (LCST) is 34.1°C. It was found that both dissolved and precipitated Zn-TDTAPc-g-PNIPAAm present high photoactivity evidenced by the experiment of photocatalytic degradation of 1, 3-diphenylisobenzofuran (DPBF) in the presence of Zn-TDTAPc-g-PNIPAAm. These properties suggest that it can be used potentially in photodynamic therapy (PDT).展开更多
Cobalt tetra(2,4-dichloro-1,3,5-triazine)aminophthalocyanine (CoPc) was immobilized covalently on activated carbon fiber (ACF) felt to obtain CoPc-modified ACF (CoPc-ACF) catalyst, and an electrocatalytic oxid...Cobalt tetra(2,4-dichloro-1,3,5-triazine)aminophthalocyanine (CoPc) was immobilized covalently on activated carbon fiber (ACF) felt to obtain CoPc-modified ACF (CoPc-ACF) catalyst, and an electrocatalytic oxidation system using CoPc-ACF as the anode was constructed. The electrocatalytic oxidation of Acid Red 1 (ARI) was investigated in aqueous solution by an UV-vis spectrophotometer and UPLC. The results indicated that AR1 could be eliminated efficiently in this electrocatalytic oxidation system. In addition, the results of FTIR, TOC and GC-MS suggested that the electrocatalytic oxidation experienced the decoloration achieved by destroying the azo linkage and the further mineralization due to the cleavages of benzene ring and naphthalene ring. The intermediates were mainly small molecular compounds such as maleic acid and succinic acid, etc. Re- petitive tests showed that CoPc-ACF can maintain high electrocatalytic activity over several cycles. The further EPR spin-trap experiments indicated that the hydroxyl radicals did not dominate the reaction in this electrocatalytic system, which was com- pletely different from the traditional electro-Fenton system. Based on the non-radical reaction mechanism, the CoPc-modified ACF electrocatalyst has potential application in treating actual dyestuffs wastewaters, which are accompanied with high concentration of hydroxyl radical scavengers such as chlorine ions and additives in the textile printing and dyeing industry.展开更多
A zinc tetraaminophthalocyanine derivative, zinc tetra(methacryloyl moiety)aminophthalocyanine (MeZnAPc) (with a double bond) was synthesized by the reaction between zinc tetraaminophthalocyanine (ZnTAPc) and methacry...A zinc tetraaminophthalocyanine derivative, zinc tetra(methacryloyl moiety)aminophthalocyanine (MeZnAPc) (with a double bond) was synthesized by the reaction between zinc tetraaminophthalocyanine (ZnTAPc) and methacryloyl chloride. Atom transfer radical polymerization (ATRP) was employed as the polymerization technique to obtain a novel pH-responsive poly- meric photosensitizer (PEGIlo-b-P(DPA,rco-MeZnAPcm)) by copolymerizing of methoxypolyethylene glycols (MPEG) (as reducing agent), 2-(isopropylamino)ethyl methacrylate (DPA) and MeZnAPc. This photosensitizer was characterized by UV-vis spectroscopy, FTIR, ~H NMR, etc. The results indicated that the photosensitizer presented the well pH-responsive be- havior around the pH range 6.0-6.5 and the high photoactivity to 1,3-diphenylisobenzofuran (DPBF). The result of photoca- talysis oxidation of L-tryptophan (L-Try) suggested that zinc phthalocyanine could present high photoactivity due to its disper- sivity at pH 5.5 without formation of micelles, and its photoactivity decreased dramatically at pH 7.4 due to wrapping ZnTAPc into the micelles. Therefore, the novel pH-responsive polymeric photosensitizer has better application prospects in the field of photodynamic therapy.展开更多
A novel thermosensitive photocatalyst,P(NIPA-co-ZnMPc),has been prepared using zinc tetra(N-carbonylacrylic)aminophthalocya-nine(ZnMPc) to copolymerize with N-isopropylacrylamide(NIPA).The lower critical solution temp...A novel thermosensitive photocatalyst,P(NIPA-co-ZnMPc),has been prepared using zinc tetra(N-carbonylacrylic)aminophthalocya-nine(ZnMPc) to copolymerize with N-isopropylacrylamide(NIPA).The lower critical solution temperature(LCST) of P(NIPA-co-ZnMPc) measured by differential scanning calorimetry(DSC) was 33.5 °C.P(NIPA-co-ZnMPc) effectively catalyzes the oxidation of 4-chlorophenols(4-CP) using oxygen as oxidant under the visible light irradiation,and it has higher photocatalytic activity than ZnMPc under the same condition.The UV-vis spectra of them in aqueous solution indicate that the macromolecular chains in P(NIPA-co-ZnMPc) restrain the aggregation of ZnMPc availably,resulting in the enhanced photocatalytic performance.The results of photocatalytic oxidation at different temperatures show that P(NIPA-co-ZnMPc) presents the highest photocatalytic efficiency around the LCST,suggesting that the macromolecular structure of P(NIPA-co-ZnMPc) can directly influence their photocatalytic activity.The hydrodynamic radius of this copolymer at different temperatures implies the intermolecular hydrophobic aggregation around the LCST,which is advantageous for the enrichment and the photocatalytic oxidation of 4-CP.Due to the high stability of P(NIPA-co-ZnMPc),it can be cyclically used in homogeneous photocatalytic oxidation and heterogeneous separation.展开更多
基金We are grateful to the National Natural Science Foundation of China (No. 50373038), Program for New Century Excellent Talents in University (NCET-04-0559) and Key International Cooperation of Science and Technology of Zhejiang (2005C14013).
文摘Two kinds of water-soluble metallophthalocyanines (Mt2Pc2), binuclear cobalt phthalocyanine (Co2Pc2) and binuclear ferric phthalocyanine (Fe2Pc2), were supported on silk fibers and modified viscose fibers to construct bioactive fibers of mimic enzyme, Mt2Pc2 used as the active center of bioactive fibers, viscose and silk fibers as the microenvironments. The catalytic oxidation ability of bioactive fibers on the malodors of methanthiol and hydrogen sulfide was investigated at room temperature. The experimental results demonstrated that the catalytic activity of such bioactive fibers was tightly correlative to the types of bioactive fibers and substrates.
基金Supported by the National Natural Science Foundation of China (Grant No. 20574061)Program for New Century Excellent Talents in University (Grant No. NCET-04-0559)Program for Changjiang Scholars and Innovative Research Team in University (IRT 0645)
文摘In this paper, zinc tetraaminophthalocyanine (Zn-APc) was immobilized on cellulosic fiber by covalent bond to obtain a novel cellulosic fiber supported metallophthalocyanine, named Zn-TDTAPc-F. At pH 11, upon visible light irradiation for 6 h in the presence of O2, Zn-TDTAPc-F was found to be highly effective for the degradation of phenol in aqueous solution, and the degradation rate of phenol was more than 95%. HPLC was used to confirm formic acid, fumaric acid and maleic acid as its main degradation products.
基金the National Natural Science Foundation of China(Grant No.20574061)the Program for New Century Excellent Talents in University(Grant No.040559)the Program for Changjiang Scholars and Innovative Research Team in University(Grant No.0654)
文摘A novel reactive metallophthalocyanine derivative, zinc tetra(2,4-dichloro-1,3,5-triazine)aminophthalocyanine (Zn-TDTAPc), was prepared and immobilized on poly(N-isopropylacrylamide) (PNIPAAm) by covalent bonding to obtain a thermosensitive polymer (Zn-TDTAPc-g-PNIPAAm). Compared with zinc tetraaminophthalocyanine (Zn-TAPc), Zn-TDTAPc-g-PNIPAAm exhibits excellent solubility in water and in most organic solvents. Furthermore, it has a special thermosensitive property in water and the lower critical solution temperature (LCST) is 34.1°C. It was found that both dissolved and precipitated Zn-TDTAPc-g-PNIPAAm present high photoactivity evidenced by the experiment of photocatalytic degradation of 1, 3-diphenylisobenzofuran (DPBF) in the presence of Zn-TDTAPc-g-PNIPAAm. These properties suggest that it can be used potentially in photodynamic therapy (PDT).
基金supported by the National Natural Science Foundation of China(51133006,51103133,51003096)Program for Changjiang Scholars and Innovative Research Team in University(0654)Textile Vision Science & Education Fund and Science Foundation of Zhejiang SciTech University(1001803-Y)
文摘Cobalt tetra(2,4-dichloro-1,3,5-triazine)aminophthalocyanine (CoPc) was immobilized covalently on activated carbon fiber (ACF) felt to obtain CoPc-modified ACF (CoPc-ACF) catalyst, and an electrocatalytic oxidation system using CoPc-ACF as the anode was constructed. The electrocatalytic oxidation of Acid Red 1 (ARI) was investigated in aqueous solution by an UV-vis spectrophotometer and UPLC. The results indicated that AR1 could be eliminated efficiently in this electrocatalytic oxidation system. In addition, the results of FTIR, TOC and GC-MS suggested that the electrocatalytic oxidation experienced the decoloration achieved by destroying the azo linkage and the further mineralization due to the cleavages of benzene ring and naphthalene ring. The intermediates were mainly small molecular compounds such as maleic acid and succinic acid, etc. Re- petitive tests showed that CoPc-ACF can maintain high electrocatalytic activity over several cycles. The further EPR spin-trap experiments indicated that the hydroxyl radicals did not dominate the reaction in this electrocatalytic system, which was com- pletely different from the traditional electro-Fenton system. Based on the non-radical reaction mechanism, the CoPc-modified ACF electrocatalyst has potential application in treating actual dyestuffs wastewaters, which are accompanied with high concentration of hydroxyl radical scavengers such as chlorine ions and additives in the textile printing and dyeing industry.
基金supported by grants from the National Natural Science Foundation of China (51133006, 51103133 & 51003096)the Program for Changjiang Scholars and Innovative Research Team in University (IRT0654)Zhejiang Provincial Natural Science Foundation of China(Y4100094)
文摘A zinc tetraaminophthalocyanine derivative, zinc tetra(methacryloyl moiety)aminophthalocyanine (MeZnAPc) (with a double bond) was synthesized by the reaction between zinc tetraaminophthalocyanine (ZnTAPc) and methacryloyl chloride. Atom transfer radical polymerization (ATRP) was employed as the polymerization technique to obtain a novel pH-responsive poly- meric photosensitizer (PEGIlo-b-P(DPA,rco-MeZnAPcm)) by copolymerizing of methoxypolyethylene glycols (MPEG) (as reducing agent), 2-(isopropylamino)ethyl methacrylate (DPA) and MeZnAPc. This photosensitizer was characterized by UV-vis spectroscopy, FTIR, ~H NMR, etc. The results indicated that the photosensitizer presented the well pH-responsive be- havior around the pH range 6.0-6.5 and the high photoactivity to 1,3-diphenylisobenzofuran (DPBF). The result of photoca- talysis oxidation of L-tryptophan (L-Try) suggested that zinc phthalocyanine could present high photoactivity due to its disper- sivity at pH 5.5 without formation of micelles, and its photoactivity decreased dramatically at pH 7.4 due to wrapping ZnTAPc into the micelles. Therefore, the novel pH-responsive polymeric photosensitizer has better application prospects in the field of photodynamic therapy.
基金support from the National Natural Science Foundation of China (Grant Nos 20574061 & 50872124)Program for Changjiang Scholars and Innovative Research Team in University (Grant No IRT 0654)Zhejiang Provincial Natural Science Foundation of China (Grant No Y4080341)
文摘A novel thermosensitive photocatalyst,P(NIPA-co-ZnMPc),has been prepared using zinc tetra(N-carbonylacrylic)aminophthalocya-nine(ZnMPc) to copolymerize with N-isopropylacrylamide(NIPA).The lower critical solution temperature(LCST) of P(NIPA-co-ZnMPc) measured by differential scanning calorimetry(DSC) was 33.5 °C.P(NIPA-co-ZnMPc) effectively catalyzes the oxidation of 4-chlorophenols(4-CP) using oxygen as oxidant under the visible light irradiation,and it has higher photocatalytic activity than ZnMPc under the same condition.The UV-vis spectra of them in aqueous solution indicate that the macromolecular chains in P(NIPA-co-ZnMPc) restrain the aggregation of ZnMPc availably,resulting in the enhanced photocatalytic performance.The results of photocatalytic oxidation at different temperatures show that P(NIPA-co-ZnMPc) presents the highest photocatalytic efficiency around the LCST,suggesting that the macromolecular structure of P(NIPA-co-ZnMPc) can directly influence their photocatalytic activity.The hydrodynamic radius of this copolymer at different temperatures implies the intermolecular hydrophobic aggregation around the LCST,which is advantageous for the enrichment and the photocatalytic oxidation of 4-CP.Due to the high stability of P(NIPA-co-ZnMPc),it can be cyclically used in homogeneous photocatalytic oxidation and heterogeneous separation.