Ultrafast fiber lasers are indispensable components in the field of ultrafast optics,and their continuous performance advancements are driving the progress of this exciting discipline.Micro/Nanofibers(MNFs)possess uni...Ultrafast fiber lasers are indispensable components in the field of ultrafast optics,and their continuous performance advancements are driving the progress of this exciting discipline.Micro/Nanofibers(MNFs)possess unique properties,such as a large fractional evanescent field,flexible and controllable dispersion,and high nonlinearity,making them highly valuable for generating ultrashort pulses.Particularly,in tasks involving mode-locking and dispersion and nonlinearity management,MNFs provide an excellent platform for investigating intriguing nonlinear dynamics and related phenomena,thereby promoting the advancement of ultrafast fiber lasers.In this paper,we present an introduction to the mode evolution and characteristics of MNFs followed by a comprehensive review of recent advances in using MNFs for ultrafast optics applications including evanescent field modulation and control,dispersion and nonlinear management techniques,and nonlinear dynamical phenomenon exploration.Finally,we discuss the potential application prospects of MNFs in the realm of ultrafast optics.展开更多
X-rays are widely used in probing inside information nondestructively,enabling broad applications in the medical radiography and electronic industries.X-ray imaging based on emerging lead halide perovskite scintillato...X-rays are widely used in probing inside information nondestructively,enabling broad applications in the medical radiography and electronic industries.X-ray imaging based on emerging lead halide perovskite scintillators has received extensive attention recently.However,the strong self-absorption,relatively low light yield and lead toxicity of these perovskites restrict their practical applications.Here,we report a series of nontoxic double-perovskite scintillators of Cs_(2)Ag_(0.6)Na_(0.4)In_(1-y)Bi_(y)Cl_(6).By controlling the content of the heavy atom Bi^(3+),the X-ray absorption coefficient,radiative emission efficiency,light yield and light decay were manipulated to maximise the scintillator performance.A light yield of up to 39,000±7000 photons/MeV for Cs_(2)Ag_(0.6)Na_(0.4)In_(0.85)Bi_(0.15)Cl_(6) was obtained,which is much higher than that for the previously reported lead halide perovskite colloidal CsPbBr_(3)(21,000 photons/MeV).The large Stokes shift between the radioluminescence(RL)and absorption spectra benefiting from self-trapped excitons(STEs)led to a negligible selfabsorption effect.Given the high light output and fast light decay of this scintillator,static X-ray imaging was attained under an extremely low dose of ∼1μGy_(air),and dynamic X-ray imaging of finger bending without a ghosting effect was demonstrated under a low-dose rate of 47.2μGy_(air) s^(−1).After thermal treatment at 85℃ for 50 h followed by X-ray irradiation for 50 h in ambient air,the scintillator performance in terms of the RL intensity and X-ray image quality remained almost unchanged.Our results shed light on exploring highly competitive scintillators beyond the scope of lead halide perovskites,not only for avoiding toxicity but also for better performance.展开更多
The wide application of optical spectroscopy makes miniaturized spectrometers with fundamental importance.The scalability,high-performance,low-cost,and small footprint are still contradicting each other and limiting t...The wide application of optical spectroscopy makes miniaturized spectrometers with fundamental importance.The scalability,high-performance,low-cost,and small footprint are still contradicting each other and limiting the applicability of miniaturized spectrometer for practical application.Here we propose a compact spectrometer that satisfies the four advantages.The device uses a fiber taper tip to generate complex leaky mode patterns within 1 mm length.The unique correspondence between the pattern and wavelength operates effectively for hundreds of nanometers spectral range while providing a spectral resolution around~1 pm.The integration of multiple taper tips enables hyperspectral imaging applications.The working range of our device can be further extended using different materials and detectors while keeping the similar architecture.展开更多
Exciton-polaritons offer the potential to achieve electrically pumped perovskite polariton lasers with much lower current thresholds than conventional photonic lasers. While optically pumped exciton-polaritons have be...Exciton-polaritons offer the potential to achieve electrically pumped perovskite polariton lasers with much lower current thresholds than conventional photonic lasers. While optically pumped exciton-polaritons have been widely studied in halide perovskites, electrically-pumped polaritons remain limited. In this study, we demonstrate the use of a solution-processing strategy to develop halide perovskite polariton light-emitting diodes(LEDs) that operate at room temperature. The strong coupling of excitons and cavity photons is confirmed through the dispersion relation from angle-resolved reflectivity, with a Rabi splitting energy of 64 meV. Our devices exhibit angle-resolved electroluminescence following the low polariton branch and achieve external quantum efficiencies of 1.7%, 3.85%, and 3.7% for detunings of 1.1,-77, and-128 meV, respectively. We also explore devices with higher efficiency of 5.37% and a narrower spectral bandwidth of 6.5 nm through the optimization of a top emitting electrode. Our work demonstrates, to our knowledge, the first room-temperature perovskite polariton LED with a typical vertical geometry and represents a significant step towards realizing electrically pumped perovskite polariton lasers.展开更多
A Roll-to-roll technology can enable the fabrication of trench-like photonic meta-structures that are strongly absorptive in the MIR region,providing a controllable optical response for diurnal radiative cooling.
The characteristics of curved semiconductor nanowire (NW) lasers were investigated. The red-shift in the laser spectra with increasing bending angles can be observed much more clearly than that in the photolumi- nes...The characteristics of curved semiconductor nanowire (NW) lasers were investigated. The red-shift in the laser spectra with increasing bending angles can be observed much more clearly than that in the photolumi- nescence (PL) spectra. Due to oscillation of light in resonant cavity, the bending loss of laser exhibits multiple times amplification of that of PL. Furthermore, an abnormal phenomenon of dominant peak switching is found in curved NWs when increasing the pump power, which has been first discovered and reported.展开更多
基金Project supported by the STI 2030-Major Projects,China(No.2021ZD0200401)the National Key Research and Development Program of China(No.2023YFF0613000)+1 种基金the National Natural Science Foundation of China(Nos.62222511 and 62175122)the Natural Science Foundation of Zhejiang Province,China(No.LR22F050006)。
文摘Ultrafast fiber lasers are indispensable components in the field of ultrafast optics,and their continuous performance advancements are driving the progress of this exciting discipline.Micro/Nanofibers(MNFs)possess unique properties,such as a large fractional evanescent field,flexible and controllable dispersion,and high nonlinearity,making them highly valuable for generating ultrashort pulses.Particularly,in tasks involving mode-locking and dispersion and nonlinearity management,MNFs provide an excellent platform for investigating intriguing nonlinear dynamics and related phenomena,thereby promoting the advancement of ultrafast fiber lasers.In this paper,we present an introduction to the mode evolution and characteristics of MNFs followed by a comprehensive review of recent advances in using MNFs for ultrafast optics applications including evanescent field modulation and control,dispersion and nonlinear management techniques,and nonlinear dynamical phenomenon exploration.Finally,we discuss the potential application prospects of MNFs in the realm of ultrafast optics.
基金the support from the National Key Research and Development Program of China(2017YFA0207700)Outstanding Youth Fund of Zhejiang Natural Science Foundation of China(LR18F050001)National Natural Science Foundation of China(61804134,61525106,U1809204).
文摘X-rays are widely used in probing inside information nondestructively,enabling broad applications in the medical radiography and electronic industries.X-ray imaging based on emerging lead halide perovskite scintillators has received extensive attention recently.However,the strong self-absorption,relatively low light yield and lead toxicity of these perovskites restrict their practical applications.Here,we report a series of nontoxic double-perovskite scintillators of Cs_(2)Ag_(0.6)Na_(0.4)In_(1-y)Bi_(y)Cl_(6).By controlling the content of the heavy atom Bi^(3+),the X-ray absorption coefficient,radiative emission efficiency,light yield and light decay were manipulated to maximise the scintillator performance.A light yield of up to 39,000±7000 photons/MeV for Cs_(2)Ag_(0.6)Na_(0.4)In_(0.85)Bi_(0.15)Cl_(6) was obtained,which is much higher than that for the previously reported lead halide perovskite colloidal CsPbBr_(3)(21,000 photons/MeV).The large Stokes shift between the radioluminescence(RL)and absorption spectra benefiting from self-trapped excitons(STEs)led to a negligible selfabsorption effect.Given the high light output and fast light decay of this scintillator,static X-ray imaging was attained under an extremely low dose of ∼1μGy_(air),and dynamic X-ray imaging of finger bending without a ghosting effect was demonstrated under a low-dose rate of 47.2μGy_(air) s^(−1).After thermal treatment at 85℃ for 50 h followed by X-ray irradiation for 50 h in ambient air,the scintillator performance in terms of the RL intensity and X-ray image quality remained almost unchanged.Our results shed light on exploring highly competitive scintillators beyond the scope of lead halide perovskites,not only for avoiding toxicity but also for better performance.
基金National Natural Science Foundation of China(NSFC)(62222511,61905213)Natural Science Foundation of Zhejiang Province China(LR22F050006).
文摘The wide application of optical spectroscopy makes miniaturized spectrometers with fundamental importance.The scalability,high-performance,low-cost,and small footprint are still contradicting each other and limiting the applicability of miniaturized spectrometer for practical application.Here we propose a compact spectrometer that satisfies the four advantages.The device uses a fiber taper tip to generate complex leaky mode patterns within 1 mm length.The unique correspondence between the pattern and wavelength operates effectively for hundreds of nanometers spectral range while providing a spectral resolution around~1 pm.The integration of multiple taper tips enables hyperspectral imaging applications.The working range of our device can be further extended using different materials and detectors while keeping the similar architecture.
基金National Key Research and Development Program of China (2017YFA0207700)Outstanding Youth Fund of Zhejiang Natural Science Foundation(LR18F050001)National Natural Science Foundation of China (61804134, 61874096, 62074136)。
文摘Exciton-polaritons offer the potential to achieve electrically pumped perovskite polariton lasers with much lower current thresholds than conventional photonic lasers. While optically pumped exciton-polaritons have been widely studied in halide perovskites, electrically-pumped polaritons remain limited. In this study, we demonstrate the use of a solution-processing strategy to develop halide perovskite polariton light-emitting diodes(LEDs) that operate at room temperature. The strong coupling of excitons and cavity photons is confirmed through the dispersion relation from angle-resolved reflectivity, with a Rabi splitting energy of 64 meV. Our devices exhibit angle-resolved electroluminescence following the low polariton branch and achieve external quantum efficiencies of 1.7%, 3.85%, and 3.7% for detunings of 1.1,-77, and-128 meV, respectively. We also explore devices with higher efficiency of 5.37% and a narrower spectral bandwidth of 6.5 nm through the optimization of a top emitting electrode. Our work demonstrates, to our knowledge, the first room-temperature perovskite polariton LED with a typical vertical geometry and represents a significant step towards realizing electrically pumped perovskite polariton lasers.
文摘A Roll-to-roll technology can enable the fabrication of trench-like photonic meta-structures that are strongly absorptive in the MIR region,providing a controllable optical response for diurnal radiative cooling.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 61177062), the Program for Zhejiang Leading Team of S&T Innovation, the Fundamental Research Funds for the Central Universities.
文摘The characteristics of curved semiconductor nanowire (NW) lasers were investigated. The red-shift in the laser spectra with increasing bending angles can be observed much more clearly than that in the photolumi- nescence (PL) spectra. Due to oscillation of light in resonant cavity, the bending loss of laser exhibits multiple times amplification of that of PL. Furthermore, an abnormal phenomenon of dominant peak switching is found in curved NWs when increasing the pump power, which has been first discovered and reported.