Neuromorphic hardware equipped with associative learn-ing capabilities presents fascinating applications in the next generation of artificial intelligence.However,research into synaptic devices exhibiting complex asso...Neuromorphic hardware equipped with associative learn-ing capabilities presents fascinating applications in the next generation of artificial intelligence.However,research into synaptic devices exhibiting complex associative learning behaviors is still nascent.Here,an optoelec-tronic memristor based on Ag/TiO_(2) Nanowires:ZnO Quantum dots/FTO was proposed and constructed to emulate the biological associative learning behaviors.Effective implementation of synaptic behaviors,including long and short-term plasticity,and learning-forgetting-relearning behaviors,were achieved in the device through the application of light and electrical stimuli.Leveraging the optoelectronic co-modulated characteristics,a simulation of neuromorphic computing was conducted,resulting in a handwriting digit recognition accuracy of 88.9%.Furthermore,a 3×7 memristor array was constructed,confirming its application in artificial visual memory.Most importantly,complex biological associative learning behaviors were emulated by mapping the light and electrical stimuli into conditioned and unconditioned stimuli,respectively.After training through associative pairs,reflexes could be triggered solely using light stimuli.Comprehen-sively,under specific optoelectronic signal applications,the four features of classical conditioning,namely acquisition,extinction,recovery,and generalization,were elegantly emulated.This work provides an optoelectronic memristor with associative behavior capabilities,offering a pathway for advancing brain-machine interfaces,autonomous robots,and machine self-learning in the future.展开更多
Pb(Mg_(1/3)Nb_(2/3))O_(3)–PbTiO_(3)(PMN-PT)piezoelectric ceramics have excellent piezoelectric properties and are used in a wide range of applications.Adjusting the solid solution ratios of PMN/PT and different conce...Pb(Mg_(1/3)Nb_(2/3))O_(3)–PbTiO_(3)(PMN-PT)piezoelectric ceramics have excellent piezoelectric properties and are used in a wide range of applications.Adjusting the solid solution ratios of PMN/PT and different concentrations of elemental doping are the main methods to modulate their piezoelectric coefficients.The combination of these controllable conditions leads to an exponential increase of possible compositions in ceramics,which makes it not easy to extend the sample data by additional experimental or theoretical calculations.In this paper,a physics-embedded machine learning method is proposed to overcome the difficulties in obtaining piezoelectric coefficients and Curie temperatures of Sm-doped PMN-PT ceramics with different components.In contrast to all-data-driven model,physics-embedded machine learning is able to learn nonlinear variation rules based on small datasets through potential correlation between ferroelectric properties.Based on the model outputs,the positions of morphotropic phase boundary(MPB)with different Sm doping amounts are explored.We also find the components with the best piezoelectric property and comprehensive performance.Moreover,we set up a database according to the obtained results,through which we can quickly find the optimal components of Sm-doped PMN-PT ceramics according to our specific needs.展开更多
Objective:To compare the efficacy of Wumei Decoction in pre and postmenopausal patients and its effect on follicle-stimulating hormone(FSH)and estradiol(E2).Methods:Sixty-four patients who attended the Department of T...Objective:To compare the efficacy of Wumei Decoction in pre and postmenopausal patients and its effect on follicle-stimulating hormone(FSH)and estradiol(E2).Methods:Sixty-four patients who attended the Department of Traditional Chinese Medicine I in Cangzhou City Central Hospital from January 2020 to January 2022 were selected and randomly divided into treatment group and control group,32 cases in each group.The treatment group took modified Wumei Decoction orally,1 dose of water boiled 2 times a day,divided into 2 warm doses;the control group took Livial orally,2.5 mg/times,1 time/day,and the observation cycles were all for 3 months.Kupperman score,FSH,E2,clinical symptoms and clinical efficacy were compared between the two groups before and after treatment.Results:The Kupperman score of the two groups decreased after treatment,and the difference was statistically significant;the total effective rate of the treatment group was higher than that of the control group,and the difference was statistically significant;there was no statistical significance in the comparison of FSH before and after the treatment of the two groups,but the FSH values of the two groups were significantly lower than those before,and the difference was statistically significant;there was no statistically significant difference in the comparison of E2 of the two groups before treatment,and the E2 values of the two groups were higher than those of the control group after the treatment.After the treatment,E2 of the two groups of patients was significantly higher than before,and the difference was statistically significant.After treatment,E2 of the treatment group was higher than that of the control group,and the comparison between the groups was statistically significant.Conclusion:There was no significant difference between modified Wumei Decoction and Livial in lowering follicle-stimulating hormone levels;modified Wumei Decoction was superior in raising oestradiol;and modified Wumei Decoction was relatively effective in improving clinical symptoms.展开更多
We successfully fabricate a high performanceβ-phase(In_(0.09)Ga_(0.91))_(2)O_(3)single-crystalline film deep ultraviolet(DUV)solar-blind photodetector.The 2-inches high crystalline quality film is hetero-grown on the...We successfully fabricate a high performanceβ-phase(In_(0.09)Ga_(0.91))_(2)O_(3)single-crystalline film deep ultraviolet(DUV)solar-blind photodetector.The 2-inches high crystalline quality film is hetero-grown on the sapphire substrates using the plasma-assisted molecular beam epitaxy(PA-MBE).The smooth InGaO single crystalline film is used to construct the solar-blind DUV detector,which utilized an interdigitated Ti/Au electrode with a metal-semiconductor-metal structure.The device exhibits a low dark current of 40 pA(0 V),while its UV photon responsivity exceeds 450 A/W(50 V)at the peak wavelength of 232 nm with illumination intensity of 0.21 m W/cm^(2)and the UV/VIS rejection ratio(R232 nm/R380 nm)exceeds 4×10^(4).Furthermore,the devices demonstrate ultrafast transient characteristics for DUV signals,with fast-rising and fast-falling times of 80 ns and 420 ns,respectively.This excellent temporal dynamic behavior can be attributed to indium doping can adjust the electronic structure of Ga_(2)O_(3)alloys to enhance the performance of InGaO solar-blind detectors.Additionally,a two-dimensional DUV scanning image is captured using the InGaO photodetector as a sensor in an imaging system.Our results pave the way for future applications of two-dimensional array DUV photodetectors based on the large-scale InGaO heteroepitaxially grown alloy wide bandgap semiconductor films.展开更多
Background:Myocardial infarctions(MI)is a major threat to human health especially in people exposed to cold environment.The polarization of macrophages towards different functional phenotypes(M1 macrophages and M2 mac...Background:Myocardial infarctions(MI)is a major threat to human health especially in people exposed to cold environment.The polarization of macrophages towards different functional phenotypes(M1 macrophages and M2 macrophages)is closely related to MI repairment.The growth differentiation factor 11(GDF11)has been reported to play a momentous role in inflammatory associated diseases.In this study,we examined the regulatory role of GDF11 in macrophage polarization and elucidated the underlying mechanisms in MI.Methods:In vivo,the mice model of MI was induced by permanent ligation of the left anterior descending coronary artery(LAD),and mice were randomly divided into the sham group,MI group,and MI+GDF11 group.The protective effect of GDF11 on myocardial infarction and its effect on macrophage polarization were verified by echocardiography,triphenyl tetrazolium chloride staining and immunofluorescence staining of heart tissue.In vitro,based on the RAW264.7 cell line,the effect of GDF11 in promoting macrophage polarization toward the M2 type by inhibiting the Notch1 Signaling pathway was validated by qRT-PCR,Western blot,and flow cytometry.Results:We found that GDF11 was significantly downregulated in the cardiac tissue of MI mice.And GDF11 supplementation can improve the cardiac function.Moreover,GDF11 could reduce the proportion of M1 macrophages and increase the accumulation of M2 macrophages in the heart tissue of MI mice.Furthermore,the cardioprotective effect of GDF11 on MI mice was weakened after macrophage clearance.At the cellular level,application of GDF11 could inhibit the expression of M1 macrophage(classically activated macrophage)markers iNOS,interleukin(IL)-1β,and IL-6 in a dose-dependent manner.In contrast,GDF11 significantly increased the level of M2 macrophage markers including IL-10,CD206,arginase 1(Arg1),and vascular endothelial growth factor(VEGF).Interestingly,GDF11 could promote M1 macrophages polarizing to M2 macrophages.At the molecular level,GDF11 significantly down-regulated the Notch1 signaling pathway,the activation of which has been demonstrated to promote M1 polarization in macrophages.Conclusions:GDF11 promoted macrophage polarization towards M2 to attenuate myocardial infarction via inhibiting Notch1 signaling pathway.展开更多
In this paper, an injection-seeded nanosecond optical parametric generation (OPG) using BBO crystal, which combines relatively low thresholds with a simple and compact configuration, was demonstrated. By seeding exter...In this paper, an injection-seeded nanosecond optical parametric generation (OPG) using BBO crystal, which combines relatively low thresholds with a simple and compact configuration, was demonstrated. By seeding externally with distributed feedback (DFB) diode laser at 1313 nm wavelength, pumped by 355 nm laser pulse, the maximum blue laser output power of 1.36 W at a rate of 100 Hz and with linewidth less than 0.13 nm were obtained, and the maximum optical to optical conversion efficiency was to 21.2%.展开更多
The datasets of two Ocean Model Intercomparison Project(OMIP)simulation experiments from the LASG/IAP Climate Ocean Model,version 3(LICOM3),forced by two different sets of atmospheric surface data,are described in thi...The datasets of two Ocean Model Intercomparison Project(OMIP)simulation experiments from the LASG/IAP Climate Ocean Model,version 3(LICOM3),forced by two different sets of atmospheric surface data,are described in this paper.The experiment forced by CORE-II(Co-ordinated Ocean–Ice Reference Experiments,Phase II)data(1948–2009)is called OMIP1,and that forced by JRA55-do(surface dataset for driving ocean–sea-ice models based on Japanese 55-year atmospheric reanalysis)data(1958–2018)is called OMIP2.First,the improvement of LICOM from CMIP5 to CMIP6 and the configurations of the two experiments are described.Second,the basic performances of the two experiments are validated using the climatological-mean and interannual time scales from observation.We find that the mean states,interannual variabilities,and long-term linear trends can be reproduced well by the two experiments.The differences between the two datasets are also discussed.Finally,the usage of these data is described.These datasets are helpful toward understanding the origin system bias of the fully coupled model.展开更多
A 61-year(1958–2018)global eddy-resolving dataset for phase 2 of the Ocean Model Intercomparison Project has been produced by the version 3 of Chinese Academy of Science,the State Key Laboratory of Numerical Modeling...A 61-year(1958–2018)global eddy-resolving dataset for phase 2 of the Ocean Model Intercomparison Project has been produced by the version 3 of Chinese Academy of Science,the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics(LASG/IAP)Climate system Ocean Model(CAS-LICOM3).The monthly and a part of the surface daily data in this study can be accessed on the Earth System Grid Federation(ESGF)node.Besides the details of the model and experiments,the evolutions and spatial patterns of large-scale and mesoscale features are also presented.The mesoscale features are reproduced well in the high-resolution simulation,as the mesoscale activities can contribute up to 50%of the total SST variability in eddy-rich regions.Also,the large-scale circulations are remarkably improved compared with the low-resolution simulation,such as the climatological annual mean SST(the RMSE is reduced from 0.59°C to 0.47°C,globally)and the evolution of Atlantic Meridional Overturning Circulation.The preliminary evaluation also indicates that there are systematic biases in the salinity,the separation location of the western boundary currents,and the magnitude of eddy kinetic energy.All these biases are worthy of further investigation.展开更多
State-of-the-art coupled general circulation models(CGCMs)are used to predict ocean heat uptake(OHU)and sealevel change under global warming.However,the projections of different models vary,resulting in high uncertain...State-of-the-art coupled general circulation models(CGCMs)are used to predict ocean heat uptake(OHU)and sealevel change under global warming.However,the projections of different models vary,resulting in high uncertainty.Much of the inter-model spread is driven by responses to surface heat perturbations.This study mainly focuses on the response of the ocean to a surface heat flux perturbation F,as prescribed by the Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP).The results of ocean model were compared with those of a CGCM with the same ocean component.On the global scale,the changes in global mean temperature,ocean heat content(OHC),and steric sea level(SSL)simulated in the OGCM are generally consistent with CGCM simulations.Differences in changes in ocean temperature,OHC,and SSL between the two models primarily occur in the Arctic and Atlantic Oceans(AA)and the Southern Ocean(SO)basins.In addition to the differences in surface heat flux anomalies between the two models,differences in heat exchange between basins also play an important role in the inconsistencies in ocean climate changes in the AA and SO basins.These discrepancies are largely due to both the larger initial value and the greater weakening change of the Atlantic meridional overturning circulation(AMOC)in CGCM.The greater weakening of the AMOC in the CGCM is associated with the atmosphere–ocean feedback and the lack of a restoring salinity boundary condition.Furthermore,differences in surface salinity boundary conditions between the two models contribute to discrepancies in SSL changes.展开更多
The Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP)is an endorsed Model Intercomparison Project in phase 6 of the Coupled Model Intercomparison Project(CMIP6).The goal of FAFMIP is to investigate the spread ...The Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP)is an endorsed Model Intercomparison Project in phase 6 of the Coupled Model Intercomparison Project(CMIP6).The goal of FAFMIP is to investigate the spread in the atmosphere–ocean general circulation model projections of ocean climate change forced by increased CO2,including the uncertainties in the simulations of ocean heat uptake,global mean sea level rise due to ocean thermal expansion and dynamic sea level change due to ocean circulation and density changes.The FAFMIP experiments have already been conducted with the Flexible Global Ocean–Atmosphere–Land System Model,gridpoint version 3.0(FGOALS-g3).The model datasets have been submitted to the Earth System Grid Federation(ESGF)node.Here,the details of the experiments,the output variables and some baseline results are presented.Compared with the preliminary results of other models,the evolutions of global mean variables can be reproduced well by FGOALS-g3.The simulations of spatial patterns are also consistent with those of other models in most regions except the North Atlantic and the Southern Ocean,indicating large uncertainties in the regional sea level projections of these two regions.展开更多
Potassium-ion batteries(KIBs)are considered the next powerful potential generation energy storage system because of substantial potassium resource availability and similar characteristics with lithium.Unfortunately,th...Potassium-ion batteries(KIBs)are considered the next powerful potential generation energy storage system because of substantial potassium resource availability and similar characteristics with lithium.Unfortunately,the actual application of KIBs is inferior to that of lithium-ion batteries(LIBs),in which the fi nite energy density,ordinary circular life,and underdeveloped fabrication technique dominate the key constraints.Various works have recently been directed to growing novel anode electrodes with superior electrochemical capability.Noticeably,metals/metal oxides materials(e.g.,Sb,Sn,Zn,SnO_(2),and MoO_(2))have been widely investigated as KIBs anodes because of high theoretical capacity,suggesting outstanding promise for high-energy KIBs.In this review,the latest research of metals/metal oxides electrodes for potassium storage is summarized.The major strategies to control the electrochemical property of metals/metal oxides electrodes are discussed.Finally,the future investigation foreground for these anode electrodes has been proposed.展开更多
Objective: Survival benefit of adjuvant chemotherapy(AC) of patients with intrapulmonary lymph node(IPLN)metastasis(level 12-14) needs investigation.We evaluated the impact of AC on patients whose metastatic nodes wer...Objective: Survival benefit of adjuvant chemotherapy(AC) of patients with intrapulmonary lymph node(IPLN)metastasis(level 12-14) needs investigation.We evaluated the impact of AC on patients whose metastatic nodes were limited to intrapulmonary levels after systematic dissection of N1 nodes.Methods: First,155 consective cases of lung cancer confirmed as pathologic N1 were collected and evaluated.Patients received systematic dissection of N2 and N1 nodes.For patients with IPLN metastasis,survival outcomes were compared between those receiving AC and those not receiving AC.Results: In this group,112 cases(72.3%) had IPLN metastasis and 55 cases(35.5%) had N1 involvement limited to level 13-14 without further disease spread to higher levels.Patients with IPLN involvement had a better prognosis than that of patients with hilar-interlobar involvement.For the intrapulmonary N1 group(level 12-14-positive,level 10-11-negative or unknown,n=112),no survival benefit was found between the AC group and nonAC group [5-year overall survival(OS): 54.6±1.6 vs.50.4±2.4 months,P=0.177].However,76 of 112 cases for whom harvesting of level-10 and level-11 nodes was done did not show cancer involvement in pathology reports(level 12-14-positive,level 10-11 both negative),oncologic outcome was better for patients receiving AC than those not receiving AC in this subgroup(5-year OS: 57.3±1.5 vs.47.1±3.2 months,P=0.002).Conclusions: Oncologic outcome may be improved by AC for patients with involvement of N1 nodes limited to intrapulmonary levels after complete examination of N1 nodes.展开更多
We report observation of dispersion for coupled exciton-polariton in a plate microcavity combining with ZnO/MgZnO multi-quantum well (QW) at room temperature. Benefited from the large exciton binding energy and giant ...We report observation of dispersion for coupled exciton-polariton in a plate microcavity combining with ZnO/MgZnO multi-quantum well (QW) at room temperature. Benefited from the large exciton binding energy and giant oscillator strength, the room-temperature Rabi splitting energy can be enhanced to be as large as 60 meV. The results of excitonic polariton dispersion can be well described using the coupling wave model. It is demonstrated that mode modification between polariton branches allowing, just by controlling the pumping location, to tune the photonic fraction in the different detuning can be investigated comprehensively. Our results present a direct observation of the exciton-polariton dispersions based on two-dimensional oxide semiconductor quantum wells, thus provide a feasible road for coupling of exciton with photon and pave the way for realizing novel polariton-type optoelectronic devices.展开更多
Adenosine Deaminases Acting on RNA (ADARs) have been studied in many animal phyla, where they have been shown to deaminate specific adenosines into inosines in duplex mRNA regions. In Drosophila, two isoform classes a...Adenosine Deaminases Acting on RNA (ADARs) have been studied in many animal phyla, where they have been shown to deaminate specific adenosines into inosines in duplex mRNA regions. In Drosophila, two isoform classes are encoded, designated full-length (contains the editase domain) and truncated (lacks this domain). Much is known about the full-length isoform, which plays a major role in regulating functions of voltage-gated ion channel proteins in the adult brain. In contrast, almost nothing is known about the functional significance of the truncated isoform. In situ hybridization shows that both isoform mRNA classes are maternally derived and transcripts for both localize primarily to the developing central nervous system. Quantitative RT-PCR shows that about 35% of all dADAR mRNA transcripts belong to the truncated class in embryos. 3’-RACE results show that abundance of the truncated isoform class is developmentally regulated, with a longer transcript appearing after the mid-blastula transition.3’-UTR sequences for the truncated isoform have been determined from diverse Drosophila species and important regulatory regions including stop codons have been mapped. Western analysis shows that both mRNA isoform classes are translated into protein during embryonic development, as full-length variant levels gradually diminish. The truncated protein isoform is present in every Drosophila species studied, extending over a period spanning about 40 x 106 years, implying a conserved function. Previous work has shown that a dADAR protein isoform binds to the evolutionarily conserved rnp-4f pre-mRNA stem-loop located in the 5’-UTR to regulate splicing, while no RNA editing was observed, suggesting the hypothesis that it is the non-catalytic truncated isoform which regulates splicing. To test this hypothesis, we have utilized RNAi technology, the results of which support the hypothesis. These results demonstrate a novel, non-catalytic function for the truncated dADAR protein isoform in Drosophila embryonic development, which is very likely evolutionarily conserved.展开更多
The phenolic compounds in Cerasus were complex,mainly including flavonoids,phenolic acids and lignin,and had antioxidant,anti-inflammatory,anti-tumor,hypoglycemic and other pharmacological activities.Its fruit contain...The phenolic compounds in Cerasus were complex,mainly including flavonoids,phenolic acids and lignin,and had antioxidant,anti-inflammatory,anti-tumor,hypoglycemic and other pharmacological activities.Its fruit contains calcium,sugar,iron,phosphorus,protein,carotene and vitamin C,which has high nutritional value.This paper reviews the research progress of chemical constituents and pharmacological effects of Cerasus in recent years,so as to provide reference for its further research.展开更多
In this paper, cucurbit[7]uril(CB[7])-mediated three-dimensional gold nanoassemblies were successfully prepared to increase the loaded amount of CB[7] and enhance the electrochemical detection of amino acids. Particle...In this paper, cucurbit[7]uril(CB[7])-mediated three-dimensional gold nanoassemblies were successfully prepared to increase the loaded amount of CB[7] and enhance the electrochemical detection of amino acids. Particle sizes of gold nanoparticles(Au NPs) significantly affect stability and detection sensitivity of nanoassemblies. The volume of gold nanoassemblies first increased and then decreased with the increase of CB[7] concentration. The 3D gold nanoassemblies composed of 16 nm Au NPs and 100 μmol/L CB[7]had excellent stability and maximum volume, exhibiting more sensitive detection for a variety of amino acids. And the detection limits of aromatic amino acids are lower in virtue of the higher binding constant between aromatic amino acids and CB[7]. This study will develop and deepen our understanding of molecular recognition in amino acids detection.展开更多
基金This work was supported by the Jinan City-University Integrated Development Strategy Project under Grant(JNSX2023017)National Research Foundation of Korea(NRF)grant funded by the Korea government(MIST)(RS-2023-00302751)+1 种基金by the National Research Foundation of Korea(NRF)funded by the Ministry of Education under Grants 2018R1A6A1A03025242 and 2018R1D1A1A09083353by Qilu Young Scholar Program of Shandong University.
文摘Neuromorphic hardware equipped with associative learn-ing capabilities presents fascinating applications in the next generation of artificial intelligence.However,research into synaptic devices exhibiting complex associative learning behaviors is still nascent.Here,an optoelec-tronic memristor based on Ag/TiO_(2) Nanowires:ZnO Quantum dots/FTO was proposed and constructed to emulate the biological associative learning behaviors.Effective implementation of synaptic behaviors,including long and short-term plasticity,and learning-forgetting-relearning behaviors,were achieved in the device through the application of light and electrical stimuli.Leveraging the optoelectronic co-modulated characteristics,a simulation of neuromorphic computing was conducted,resulting in a handwriting digit recognition accuracy of 88.9%.Furthermore,a 3×7 memristor array was constructed,confirming its application in artificial visual memory.Most importantly,complex biological associative learning behaviors were emulated by mapping the light and electrical stimuli into conditioned and unconditioned stimuli,respectively.After training through associative pairs,reflexes could be triggered solely using light stimuli.Comprehen-sively,under specific optoelectronic signal applications,the four features of classical conditioning,namely acquisition,extinction,recovery,and generalization,were elegantly emulated.This work provides an optoelectronic memristor with associative behavior capabilities,offering a pathway for advancing brain-machine interfaces,autonomous robots,and machine self-learning in the future.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.52272116 and 12002400)the Natural Science Foundation of Shandong Province (Grant No.ZR2021ME096)the Youth Innovation Team Project of Shandong Provincial Education Department (Grant No.2019KJJ012)。
文摘Pb(Mg_(1/3)Nb_(2/3))O_(3)–PbTiO_(3)(PMN-PT)piezoelectric ceramics have excellent piezoelectric properties and are used in a wide range of applications.Adjusting the solid solution ratios of PMN/PT and different concentrations of elemental doping are the main methods to modulate their piezoelectric coefficients.The combination of these controllable conditions leads to an exponential increase of possible compositions in ceramics,which makes it not easy to extend the sample data by additional experimental or theoretical calculations.In this paper,a physics-embedded machine learning method is proposed to overcome the difficulties in obtaining piezoelectric coefficients and Curie temperatures of Sm-doped PMN-PT ceramics with different components.In contrast to all-data-driven model,physics-embedded machine learning is able to learn nonlinear variation rules based on small datasets through potential correlation between ferroelectric properties.Based on the model outputs,the positions of morphotropic phase boundary(MPB)with different Sm doping amounts are explored.We also find the components with the best piezoelectric property and comprehensive performance.Moreover,we set up a database according to the obtained results,through which we can quickly find the optimal components of Sm-doped PMN-PT ceramics according to our specific needs.
文摘Objective:To compare the efficacy of Wumei Decoction in pre and postmenopausal patients and its effect on follicle-stimulating hormone(FSH)and estradiol(E2).Methods:Sixty-four patients who attended the Department of Traditional Chinese Medicine I in Cangzhou City Central Hospital from January 2020 to January 2022 were selected and randomly divided into treatment group and control group,32 cases in each group.The treatment group took modified Wumei Decoction orally,1 dose of water boiled 2 times a day,divided into 2 warm doses;the control group took Livial orally,2.5 mg/times,1 time/day,and the observation cycles were all for 3 months.Kupperman score,FSH,E2,clinical symptoms and clinical efficacy were compared between the two groups before and after treatment.Results:The Kupperman score of the two groups decreased after treatment,and the difference was statistically significant;the total effective rate of the treatment group was higher than that of the control group,and the difference was statistically significant;there was no statistical significance in the comparison of FSH before and after the treatment of the two groups,but the FSH values of the two groups were significantly lower than those before,and the difference was statistically significant;there was no statistically significant difference in the comparison of E2 of the two groups before treatment,and the E2 values of the two groups were higher than those of the control group after the treatment.After the treatment,E2 of the two groups of patients was significantly higher than before,and the difference was statistically significant.After treatment,E2 of the treatment group was higher than that of the control group,and the comparison between the groups was statistically significant.Conclusion:There was no significant difference between modified Wumei Decoction and Livial in lowering follicle-stimulating hormone levels;modified Wumei Decoction was superior in raising oestradiol;and modified Wumei Decoction was relatively effective in improving clinical symptoms.
基金the National Natural Science Foundation of China(Grant Nos.U22A2073,11974433,91833301,and 11974122)。
文摘We successfully fabricate a high performanceβ-phase(In_(0.09)Ga_(0.91))_(2)O_(3)single-crystalline film deep ultraviolet(DUV)solar-blind photodetector.The 2-inches high crystalline quality film is hetero-grown on the sapphire substrates using the plasma-assisted molecular beam epitaxy(PA-MBE).The smooth InGaO single crystalline film is used to construct the solar-blind DUV detector,which utilized an interdigitated Ti/Au electrode with a metal-semiconductor-metal structure.The device exhibits a low dark current of 40 pA(0 V),while its UV photon responsivity exceeds 450 A/W(50 V)at the peak wavelength of 232 nm with illumination intensity of 0.21 m W/cm^(2)and the UV/VIS rejection ratio(R232 nm/R380 nm)exceeds 4×10^(4).Furthermore,the devices demonstrate ultrafast transient characteristics for DUV signals,with fast-rising and fast-falling times of 80 ns and 420 ns,respectively.This excellent temporal dynamic behavior can be attributed to indium doping can adjust the electronic structure of Ga_(2)O_(3)alloys to enhance the performance of InGaO solar-blind detectors.Additionally,a two-dimensional DUV scanning image is captured using the InGaO photodetector as a sensor in an imaging system.Our results pave the way for future applications of two-dimensional array DUV photodetectors based on the large-scale InGaO heteroepitaxially grown alloy wide bandgap semiconductor films.
基金This work was supported by the National Natural Science Foundation of China(81970320 and 82003749).
文摘Background:Myocardial infarctions(MI)is a major threat to human health especially in people exposed to cold environment.The polarization of macrophages towards different functional phenotypes(M1 macrophages and M2 macrophages)is closely related to MI repairment.The growth differentiation factor 11(GDF11)has been reported to play a momentous role in inflammatory associated diseases.In this study,we examined the regulatory role of GDF11 in macrophage polarization and elucidated the underlying mechanisms in MI.Methods:In vivo,the mice model of MI was induced by permanent ligation of the left anterior descending coronary artery(LAD),and mice were randomly divided into the sham group,MI group,and MI+GDF11 group.The protective effect of GDF11 on myocardial infarction and its effect on macrophage polarization were verified by echocardiography,triphenyl tetrazolium chloride staining and immunofluorescence staining of heart tissue.In vitro,based on the RAW264.7 cell line,the effect of GDF11 in promoting macrophage polarization toward the M2 type by inhibiting the Notch1 Signaling pathway was validated by qRT-PCR,Western blot,and flow cytometry.Results:We found that GDF11 was significantly downregulated in the cardiac tissue of MI mice.And GDF11 supplementation can improve the cardiac function.Moreover,GDF11 could reduce the proportion of M1 macrophages and increase the accumulation of M2 macrophages in the heart tissue of MI mice.Furthermore,the cardioprotective effect of GDF11 on MI mice was weakened after macrophage clearance.At the cellular level,application of GDF11 could inhibit the expression of M1 macrophage(classically activated macrophage)markers iNOS,interleukin(IL)-1β,and IL-6 in a dose-dependent manner.In contrast,GDF11 significantly increased the level of M2 macrophage markers including IL-10,CD206,arginase 1(Arg1),and vascular endothelial growth factor(VEGF).Interestingly,GDF11 could promote M1 macrophages polarizing to M2 macrophages.At the molecular level,GDF11 significantly down-regulated the Notch1 signaling pathway,the activation of which has been demonstrated to promote M1 polarization in macrophages.Conclusions:GDF11 promoted macrophage polarization towards M2 to attenuate myocardial infarction via inhibiting Notch1 signaling pathway.
文摘In this paper, an injection-seeded nanosecond optical parametric generation (OPG) using BBO crystal, which combines relatively low thresholds with a simple and compact configuration, was demonstrated. By seeding externally with distributed feedback (DFB) diode laser at 1313 nm wavelength, pumped by 355 nm laser pulse, the maximum blue laser output power of 1.36 W at a rate of 100 Hz and with linewidth less than 0.13 nm were obtained, and the maximum optical to optical conversion efficiency was to 21.2%.
基金supported by the National Key R&D Program for Developing Basic Sciences (Grant Nos. 2016YFC1401401 and 2016YFC1401601)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDC01000000)the National Natural Science Foundation of China (Grants Nos. 41576026, 41576025, 41776030, 41931183 and 41976026)
文摘The datasets of two Ocean Model Intercomparison Project(OMIP)simulation experiments from the LASG/IAP Climate Ocean Model,version 3(LICOM3),forced by two different sets of atmospheric surface data,are described in this paper.The experiment forced by CORE-II(Co-ordinated Ocean–Ice Reference Experiments,Phase II)data(1948–2009)is called OMIP1,and that forced by JRA55-do(surface dataset for driving ocean–sea-ice models based on Japanese 55-year atmospheric reanalysis)data(1958–2018)is called OMIP2.First,the improvement of LICOM from CMIP5 to CMIP6 and the configurations of the two experiments are described.Second,the basic performances of the two experiments are validated using the climatological-mean and interannual time scales from observation.We find that the mean states,interannual variabilities,and long-term linear trends can be reproduced well by the two experiments.The differences between the two datasets are also discussed.Finally,the usage of these data is described.These datasets are helpful toward understanding the origin system bias of the fully coupled model.
基金This study was supported by National Key R&D Program for Developing Basic Sciences(2018YFA0605703,2016YFC1401401,2016YFC1401601)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB42010404,XDC01000000)the National Natural Science Foundation of China(Grants 41976026,41776030 and 41931183,41931182,41576026)
文摘A 61-year(1958–2018)global eddy-resolving dataset for phase 2 of the Ocean Model Intercomparison Project has been produced by the version 3 of Chinese Academy of Science,the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics(LASG/IAP)Climate system Ocean Model(CAS-LICOM3).The monthly and a part of the surface daily data in this study can be accessed on the Earth System Grid Federation(ESGF)node.Besides the details of the model and experiments,the evolutions and spatial patterns of large-scale and mesoscale features are also presented.The mesoscale features are reproduced well in the high-resolution simulation,as the mesoscale activities can contribute up to 50%of the total SST variability in eddy-rich regions.Also,the large-scale circulations are remarkably improved compared with the low-resolution simulation,such as the climatological annual mean SST(the RMSE is reduced from 0.59°C to 0.47°C,globally)and the evolution of Atlantic Meridional Overturning Circulation.The preliminary evaluation also indicates that there are systematic biases in the salinity,the separation location of the western boundary currents,and the magnitude of eddy kinetic energy.All these biases are worthy of further investigation.
基金jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA19020202)Key Research Program of Frontier Sciences,the Chinese Academy of Sciences(Grant No.ZDBS-LYDQC010)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB42000000)the open fund of State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography(Grant No.QNHX2017)supported by the National Natural Science Foundation of China(Grant No.41706028)。
文摘State-of-the-art coupled general circulation models(CGCMs)are used to predict ocean heat uptake(OHU)and sealevel change under global warming.However,the projections of different models vary,resulting in high uncertainty.Much of the inter-model spread is driven by responses to surface heat perturbations.This study mainly focuses on the response of the ocean to a surface heat flux perturbation F,as prescribed by the Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP).The results of ocean model were compared with those of a CGCM with the same ocean component.On the global scale,the changes in global mean temperature,ocean heat content(OHC),and steric sea level(SSL)simulated in the OGCM are generally consistent with CGCM simulations.Differences in changes in ocean temperature,OHC,and SSL between the two models primarily occur in the Arctic and Atlantic Oceans(AA)and the Southern Ocean(SO)basins.In addition to the differences in surface heat flux anomalies between the two models,differences in heat exchange between basins also play an important role in the inconsistencies in ocean climate changes in the AA and SO basins.These discrepancies are largely due to both the larger initial value and the greater weakening change of the Atlantic meridional overturning circulation(AMOC)in CGCM.The greater weakening of the AMOC in the CGCM is associated with the atmosphere–ocean feedback and the lack of a restoring salinity boundary condition.Furthermore,differences in surface salinity boundary conditions between the two models contribute to discrepancies in SSL changes.
基金This study was supported by National Key R&D Program for Developing Basic Sciences(2018YFA0605703)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB42010404)the National Natural Science Foundation of China(Grants 41976026,41776030 and 41931183,41931182)。
文摘The Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP)is an endorsed Model Intercomparison Project in phase 6 of the Coupled Model Intercomparison Project(CMIP6).The goal of FAFMIP is to investigate the spread in the atmosphere–ocean general circulation model projections of ocean climate change forced by increased CO2,including the uncertainties in the simulations of ocean heat uptake,global mean sea level rise due to ocean thermal expansion and dynamic sea level change due to ocean circulation and density changes.The FAFMIP experiments have already been conducted with the Flexible Global Ocean–Atmosphere–Land System Model,gridpoint version 3.0(FGOALS-g3).The model datasets have been submitted to the Earth System Grid Federation(ESGF)node.Here,the details of the experiments,the output variables and some baseline results are presented.Compared with the preliminary results of other models,the evolutions of global mean variables can be reproduced well by FGOALS-g3.The simulations of spatial patterns are also consistent with those of other models in most regions except the North Atlantic and the Southern Ocean,indicating large uncertainties in the regional sea level projections of these two regions.
基金This work was supported by the National Natural Science Foundation of China(No.91963113).
文摘Potassium-ion batteries(KIBs)are considered the next powerful potential generation energy storage system because of substantial potassium resource availability and similar characteristics with lithium.Unfortunately,the actual application of KIBs is inferior to that of lithium-ion batteries(LIBs),in which the fi nite energy density,ordinary circular life,and underdeveloped fabrication technique dominate the key constraints.Various works have recently been directed to growing novel anode electrodes with superior electrochemical capability.Noticeably,metals/metal oxides materials(e.g.,Sb,Sn,Zn,SnO_(2),and MoO_(2))have been widely investigated as KIBs anodes because of high theoretical capacity,suggesting outstanding promise for high-energy KIBs.In this review,the latest research of metals/metal oxides electrodes for potassium storage is summarized.The major strategies to control the electrochemical property of metals/metal oxides electrodes are discussed.Finally,the future investigation foreground for these anode electrodes has been proposed.
基金supported in part by National Key R&D Program of China(No.2018YFC0910700)the Beijing Municipal Administration of Hospitals'Youth Programme(No.QML20171103)+2 种基金the Special Fund of Beijing Municipal Administration of Hospitals Clinical Medicine Development(No.XMLX201841)the Beijing Municipal Science&Technology Commission(No.Z161100000516063)Beijing Human Resources and Social Security Bureau(Beijing Millions of Talents Project,2018A05)
文摘Objective: Survival benefit of adjuvant chemotherapy(AC) of patients with intrapulmonary lymph node(IPLN)metastasis(level 12-14) needs investigation.We evaluated the impact of AC on patients whose metastatic nodes were limited to intrapulmonary levels after systematic dissection of N1 nodes.Methods: First,155 consective cases of lung cancer confirmed as pathologic N1 were collected and evaluated.Patients received systematic dissection of N2 and N1 nodes.For patients with IPLN metastasis,survival outcomes were compared between those receiving AC and those not receiving AC.Results: In this group,112 cases(72.3%) had IPLN metastasis and 55 cases(35.5%) had N1 involvement limited to level 13-14 without further disease spread to higher levels.Patients with IPLN involvement had a better prognosis than that of patients with hilar-interlobar involvement.For the intrapulmonary N1 group(level 12-14-positive,level 10-11-negative or unknown,n=112),no survival benefit was found between the AC group and nonAC group [5-year overall survival(OS): 54.6±1.6 vs.50.4±2.4 months,P=0.177].However,76 of 112 cases for whom harvesting of level-10 and level-11 nodes was done did not show cancer involvement in pathology reports(level 12-14-positive,level 10-11 both negative),oncologic outcome was better for patients receiving AC than those not receiving AC in this subgroup(5-year OS: 57.3±1.5 vs.47.1±3.2 months,P=0.002).Conclusions: Oncologic outcome may be improved by AC for patients with involvement of N1 nodes limited to intrapulmonary levels after complete examination of N1 nodes.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974433,91833301,and 11974122)the Guangdong Natural Science Fund for Distinguished Young Scholars,China(Grant No.2016A030306044)the Science and Technology Program of Guangzhou,China(Grant No.201707020014).
文摘We report observation of dispersion for coupled exciton-polariton in a plate microcavity combining with ZnO/MgZnO multi-quantum well (QW) at room temperature. Benefited from the large exciton binding energy and giant oscillator strength, the room-temperature Rabi splitting energy can be enhanced to be as large as 60 meV. The results of excitonic polariton dispersion can be well described using the coupling wave model. It is demonstrated that mode modification between polariton branches allowing, just by controlling the pumping location, to tune the photonic fraction in the different detuning can be investigated comprehensively. Our results present a direct observation of the exciton-polariton dispersions based on two-dimensional oxide semiconductor quantum wells, thus provide a feasible road for coupling of exciton with photon and pave the way for realizing novel polariton-type optoelectronic devices.
文摘Adenosine Deaminases Acting on RNA (ADARs) have been studied in many animal phyla, where they have been shown to deaminate specific adenosines into inosines in duplex mRNA regions. In Drosophila, two isoform classes are encoded, designated full-length (contains the editase domain) and truncated (lacks this domain). Much is known about the full-length isoform, which plays a major role in regulating functions of voltage-gated ion channel proteins in the adult brain. In contrast, almost nothing is known about the functional significance of the truncated isoform. In situ hybridization shows that both isoform mRNA classes are maternally derived and transcripts for both localize primarily to the developing central nervous system. Quantitative RT-PCR shows that about 35% of all dADAR mRNA transcripts belong to the truncated class in embryos. 3’-RACE results show that abundance of the truncated isoform class is developmentally regulated, with a longer transcript appearing after the mid-blastula transition.3’-UTR sequences for the truncated isoform have been determined from diverse Drosophila species and important regulatory regions including stop codons have been mapped. Western analysis shows that both mRNA isoform classes are translated into protein during embryonic development, as full-length variant levels gradually diminish. The truncated protein isoform is present in every Drosophila species studied, extending over a period spanning about 40 x 106 years, implying a conserved function. Previous work has shown that a dADAR protein isoform binds to the evolutionarily conserved rnp-4f pre-mRNA stem-loop located in the 5’-UTR to regulate splicing, while no RNA editing was observed, suggesting the hypothesis that it is the non-catalytic truncated isoform which regulates splicing. To test this hypothesis, we have utilized RNAi technology, the results of which support the hypothesis. These results demonstrate a novel, non-catalytic function for the truncated dADAR protein isoform in Drosophila embryonic development, which is very likely evolutionarily conserved.
文摘The phenolic compounds in Cerasus were complex,mainly including flavonoids,phenolic acids and lignin,and had antioxidant,anti-inflammatory,anti-tumor,hypoglycemic and other pharmacological activities.Its fruit contains calcium,sugar,iron,phosphorus,protein,carotene and vitamin C,which has high nutritional value.This paper reviews the research progress of chemical constituents and pharmacological effects of Cerasus in recent years,so as to provide reference for its further research.
基金supported by the Ministry of Science and Technology of the People’s Republic of China (2022YFA1402901)the National Natural Science Foundation of China (NSFC, T2125004, 12274227, and 12004183)+2 种基金the Fundamental Research Funds for the Central Universities (30921011214)the Funding of Nanjing University of Science & Technology (TSXK2022D002)support from the Tianjing Supercomputer Centre。
基金supported in part by grants from the National Natural Science Foundation of China (No. 21871108)the Program for Innovative Teams of Outstanding Young and Middle-Aged Researchers in the Higher Education Institutions of Hubei Province(No. T201702)。
文摘In this paper, cucurbit[7]uril(CB[7])-mediated three-dimensional gold nanoassemblies were successfully prepared to increase the loaded amount of CB[7] and enhance the electrochemical detection of amino acids. Particle sizes of gold nanoparticles(Au NPs) significantly affect stability and detection sensitivity of nanoassemblies. The volume of gold nanoassemblies first increased and then decreased with the increase of CB[7] concentration. The 3D gold nanoassemblies composed of 16 nm Au NPs and 100 μmol/L CB[7]had excellent stability and maximum volume, exhibiting more sensitive detection for a variety of amino acids. And the detection limits of aromatic amino acids are lower in virtue of the higher binding constant between aromatic amino acids and CB[7]. This study will develop and deepen our understanding of molecular recognition in amino acids detection.