Extending the ionic conductivity is the pre-requisite of electrolytes in fuel cell technology for high-electrochemical performance.In this regard,the introduction of semiconductor-oxide materials and the approach of h...Extending the ionic conductivity is the pre-requisite of electrolytes in fuel cell technology for high-electrochemical performance.In this regard,the introduction of semiconductor-oxide materials and the approach of heterostructure formation by modulating energy bands to enhance ionic conduction acting as an electrolyte in fuel cell-device.Semiconductor(n-type;SnO_(2))plays a key role by introducing into p-type SrFe_(0.2)Ti_(0.8)O_(3-δ)(SFT)semiconductor perovskite materials to construct p-n heterojunction for high ionic conductivity.Therefore,two different composites of SFT and SnO_(2)are constructed by gluing p-and n-type SFT-SnO_(2),where the optimal composition of SFT-SnO_(2)(6∶4)heterostructure electrolyte-based fuel cell achieved excellent ionic conductivity 0.24 S cm^(-1)with power-output of 1004 mW cm^(-2)and high OCV 1.12 V at a low operational temperature of 500℃.The high power-output and significant ionic conductivity with durable operation of 54 h are accredited to SFT-SnO_(2)heterojunction formation including interfacial conduction assisted by a built-in electric field in fuel cell device.Moreover,the fuel conversion efficiency and considerable Faradaic efficiency reveal the compatibility of SFT-SnO_(2)heterostructure electrolyte and ruled-out short-circuiting issue.Further,the first principle calculation provides sufficient information on structure optimization and energy-band structure modulation of SFT-SnO_(2).This strategy will provide new insight into semiconductor-based fuel cell technology to design novel electrolytes.展开更多
Polarizing beam splitter has rather significant applications in polarization diversity circuits and polarization multiplexing systems.In this paper,we present an asymmetric polarizing beam splitter utilizing hybrid pl...Polarizing beam splitter has rather significant applications in polarization diversity circuits and polarization multiplexing systems.In this paper,we present an asymmetric polarizing beam splitter utilizing hybrid plasmonic waveguide.The special hybrid structure with a hybrid waveguide and a dielectric waveguide can limit the energy of TE and TM modes to a different layer.Therefore,we can achieve beam splitting by adjusting the corresponding parameters of the two waveguides.First,we studied the influences of different structure parameters on the real part of the effective mode refractive index of the two waveguides,and obtained a set of parameters that satisfy the condition of strong coupling of TM mode and weak coupling of TE mode.Then,the performance of our proposed polarizing beam splitter is evaluated numerically.The length of the coupling section is only 4.1μm,and the propagation loss of TM and TE modes is 0.0025 d B/μm and 0.0031 d B/μm respectively.Additionally,the extinction ratios of TM and TE modes are 10.62 d B and 12.55 d B,respectively.Particularly,the proposed device has excellent wavelength insensitivity.Over the entire C-band,the fluctuation of the whole normalized output power is less than 0.03.In short,our proposed asymmetric polarizing beam splitter features ultra-compactness,low propagation loss,and broad bandwidth,which would provide promising applications in polarization multiplexing system and polarization diversity circuits relevant to optical interconnection.展开更多
Plasmonic waveguides,as a competitive candidate,have been widely studied in rapid developing photonic integrated circuits(PICs)and optical interconnection fields.However,crosstalk between plasmonic waveguides is a cri...Plasmonic waveguides,as a competitive candidate,have been widely studied in rapid developing photonic integrated circuits(PICs)and optical interconnection fields.However,crosstalk between plasmonic waveguides is a critical issue that has to be considered in practice.Actually,crosstalk dominates the ultimate integration density of the planar photonic circuits.This paper reviews the recent research work on evaluation methods and crosstalk suppression approaches of plasmonic waveguides.Three crosstalk evaluation methods based on comparison of specific parameters of waveguides have been summarized.Furthermore,four specific approaches to reduce crosstalk have been illustrated as two categories according to their impacts on waveguide performances and the whole circuit.One means of crosstalk suppression is changing the placement of waveguides,which could maintain the transmission characteristics of the original waveguide.The other means is inserting medium,which has the advantage of occupying smaller space compared to the first method.Consequently,to suppress crosstalk between plasmonic waveguides,one should choose suitable approach.展开更多
Although photodetection based on two-dimensional(2D)van der Waals(vdWs)P-N heterojunction has attracted extensive attention recently,their low responsivity(R)due to the lack of carrier gain mechanism in reverse bias o...Although photodetection based on two-dimensional(2D)van der Waals(vdWs)P-N heterojunction has attracted extensive attention recently,their low responsivity(R)due to the lack of carrier gain mechanism in reverse bias or zero bias operation hinders their applications in advanced photodetection area.Here,a black phosphorus/rhodamine 6G/molybdenum disulfide(BP/R6G/MoS_(2))photodiode with high responsivity at reverse bias or zero bias has been achieved by using interfacial charge transfer of R6G molecules assembled between heterojunction layers.The formed vdWs interface achieves high performance photoresponse by efficiently separating the additional photogenerated electrons and holes generated by R6G molecules.The devices sensitized by the dye molecule R6G exhibit enhanced photodetection performance without sacrificing the photoresponse speed.Among them,the R increased by 14.8-20.4 times,and the specific detectivity(D^(*))increased by 24.9-34.4 times.The strategy based on interlayer assembly of dye molecules proposed here may pave a new way for realizing high-performance photodetection based on 2D vdWs heterojunctions with high responsivity and fast response speed.展开更多
Several public-key encryption schemes used to solve the problem of ciphertext data processing on the fly are discussed. A new targeted fully homomorphic encryption scheme based on the discrete logarithm problem is pre...Several public-key encryption schemes used to solve the problem of ciphertext data processing on the fly are discussed. A new targeted fully homomorphic encryption scheme based on the discrete logarithm problem is presented. Public-key encryption cryptosystems are classified to examine homomorphic encryption. Without employing techniques proposed by Gentry such as somewhat homomorphic and bootstrapping techniques, or relinearization technique proposed by Brakerski et al., a new method called "Double Decryption Algorithm" is employed in our cryptography to satisfy a fully or targeted fully homomorphic property. Inspired by EIGamal and BGN cryptography, we obtain the desired fully homomorphic property by selecting a new group and adding an extra component to the ciphertext. Proof of semantic security is also demonstrated.展开更多
Blockchain technologies have been applied in many areas,from economics,the internet of things to the industrial internet.In order to solve the issue that the Hyperledger Fabric does not currently support Chinese Comme...Blockchain technologies have been applied in many areas,from economics,the internet of things to the industrial internet.In order to solve the issue that the Hyperledger Fabric does not currently support Chinese Commercial Cryptographic(CCC)algorithms,we extended the Blockchain Cryptographic Service Provider(BCCSP)module in the Hyperledger Fabric by upgrading the original BCCSP module to support the CCC algorithms SM2 and SM3.Furthermore,we designed a transaction process by using UBCCSP(Upgraded BCCSP),and a new smart contract also has been presented.After that,an improved consortium blockchain information system based on UBCCSP named UCBIS(Consortium Blockchain Information System based on UBCCSP)is proposed.In the Hyperledger Fabric transaction process,the identity information and transaction data are protected by the SM2 and SM3 algorithms,moreover,SM3 is also used in the construction process of smart contracts.Our smart contracts reduce the total data amount and improve query efficiency.Finally,the information query system based on UBCCSP is implemented.After being tested and analyzed,the average time for every query is only 31.162 ms in the blockchain system,which has better performance and higher query efficiency.展开更多
This paper presents a novel design for single-shot terahertz polarization detection based on terahertz time-domain spectroscopy(THz-TDS).Its validity has been confirmed by comparing its detection results with those of...This paper presents a novel design for single-shot terahertz polarization detection based on terahertz time-domain spectroscopy(THz-TDS).Its validity has been confirmed by comparing its detection results with those of the THz common-path spectral interferometer through two separate measurements for the orthogonal components.Our results also show that its detection signal-to-noise ratios(SNRs)are obviously superior to those of the 45°optical bias THz-TDS by electro-optical sampling due to its operation on common-path spectral interference rather than the polarization-sensitive intensity modulation.The setup works without need of any optical scan,which does not only save time,but also efficiently avoids the disturbances from the fluctuations of the system and environment.Its single-shot mode allows it to work well for the applications with poor or no repeatability.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.32250410309 and 52105582)Natural Science Foundation of Guangdong Province(Grant No.2022A1515010894 and 2022B0303040002)+1 种基金Fundamental Research Foundation of Shenzhen(JCYJ20210324095210030 and JCYJ20220818095810023)Shenzhen-Hong Kong-Macao S&T Program(Category C:SGDX20210823103200004)
文摘Extending the ionic conductivity is the pre-requisite of electrolytes in fuel cell technology for high-electrochemical performance.In this regard,the introduction of semiconductor-oxide materials and the approach of heterostructure formation by modulating energy bands to enhance ionic conduction acting as an electrolyte in fuel cell-device.Semiconductor(n-type;SnO_(2))plays a key role by introducing into p-type SrFe_(0.2)Ti_(0.8)O_(3-δ)(SFT)semiconductor perovskite materials to construct p-n heterojunction for high ionic conductivity.Therefore,two different composites of SFT and SnO_(2)are constructed by gluing p-and n-type SFT-SnO_(2),where the optimal composition of SFT-SnO_(2)(6∶4)heterostructure electrolyte-based fuel cell achieved excellent ionic conductivity 0.24 S cm^(-1)with power-output of 1004 mW cm^(-2)and high OCV 1.12 V at a low operational temperature of 500℃.The high power-output and significant ionic conductivity with durable operation of 54 h are accredited to SFT-SnO_(2)heterojunction formation including interfacial conduction assisted by a built-in electric field in fuel cell device.Moreover,the fuel conversion efficiency and considerable Faradaic efficiency reveal the compatibility of SFT-SnO_(2)heterostructure electrolyte and ruled-out short-circuiting issue.Further,the first principle calculation provides sufficient information on structure optimization and energy-band structure modulation of SFT-SnO_(2).This strategy will provide new insight into semiconductor-based fuel cell technology to design novel electrolytes.
基金supported by the Shenzhen Science and Technology Program(JCYJ20210324093806017)the ShenzhenHong Kong Joint Innovation Foundation(SGDX20190919094401725)。
文摘Polarizing beam splitter has rather significant applications in polarization diversity circuits and polarization multiplexing systems.In this paper,we present an asymmetric polarizing beam splitter utilizing hybrid plasmonic waveguide.The special hybrid structure with a hybrid waveguide and a dielectric waveguide can limit the energy of TE and TM modes to a different layer.Therefore,we can achieve beam splitting by adjusting the corresponding parameters of the two waveguides.First,we studied the influences of different structure parameters on the real part of the effective mode refractive index of the two waveguides,and obtained a set of parameters that satisfy the condition of strong coupling of TM mode and weak coupling of TE mode.Then,the performance of our proposed polarizing beam splitter is evaluated numerically.The length of the coupling section is only 4.1μm,and the propagation loss of TM and TE modes is 0.0025 d B/μm and 0.0031 d B/μm respectively.Additionally,the extinction ratios of TM and TE modes are 10.62 d B and 12.55 d B,respectively.Particularly,the proposed device has excellent wavelength insensitivity.Over the entire C-band,the fluctuation of the whole normalized output power is less than 0.03.In short,our proposed asymmetric polarizing beam splitter features ultra-compactness,low propagation loss,and broad bandwidth,which would provide promising applications in polarization multiplexing system and polarization diversity circuits relevant to optical interconnection.
文摘Plasmonic waveguides,as a competitive candidate,have been widely studied in rapid developing photonic integrated circuits(PICs)and optical interconnection fields.However,crosstalk between plasmonic waveguides is a critical issue that has to be considered in practice.Actually,crosstalk dominates the ultimate integration density of the planar photonic circuits.This paper reviews the recent research work on evaluation methods and crosstalk suppression approaches of plasmonic waveguides.Three crosstalk evaluation methods based on comparison of specific parameters of waveguides have been summarized.Furthermore,four specific approaches to reduce crosstalk have been illustrated as two categories according to their impacts on waveguide performances and the whole circuit.One means of crosstalk suppression is changing the placement of waveguides,which could maintain the transmission characteristics of the original waveguide.The other means is inserting medium,which has the advantage of occupying smaller space compared to the first method.Consequently,to suppress crosstalk between plasmonic waveguides,one should choose suitable approach.
基金This work was supported by National Key Research and Development Project(No.2019YFB2203503)the National Natural Science Foundation of China(No.62105211)+8 种基金China Postdoctoral Science Foundation(Nos.2021M702242 and 2022T150431)Natural Science Foundation of Guangdong Province(Nos.2018B030306038 and 2020A1515110373)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515010649)Science and Technology Projects in Guangzhou(No.202201000002)Science and Technology Innovation Commission of Shenzhen(Nos.JCYJ20180507182047316,20200805132016001,and JCYJ20200109105608771)Natural Science Foundation of Jilin Province(No.YDZJ202201ZYTS429)NTUT-SZU Joint Research Program(No.2021008)Authors acknowledge support and funding of King Khalid University through Research Center for Advanced Materials Science(RCAMS)(No.RCAMS/KKU/0010/21)The authors also acknowledge the Photonics Center of Shenzhen University for technical support.
文摘Although photodetection based on two-dimensional(2D)van der Waals(vdWs)P-N heterojunction has attracted extensive attention recently,their low responsivity(R)due to the lack of carrier gain mechanism in reverse bias or zero bias operation hinders their applications in advanced photodetection area.Here,a black phosphorus/rhodamine 6G/molybdenum disulfide(BP/R6G/MoS_(2))photodiode with high responsivity at reverse bias or zero bias has been achieved by using interfacial charge transfer of R6G molecules assembled between heterojunction layers.The formed vdWs interface achieves high performance photoresponse by efficiently separating the additional photogenerated electrons and holes generated by R6G molecules.The devices sensitized by the dye molecule R6G exhibit enhanced photodetection performance without sacrificing the photoresponse speed.Among them,the R increased by 14.8-20.4 times,and the specific detectivity(D^(*))increased by 24.9-34.4 times.The strategy based on interlayer assembly of dye molecules proposed here may pave a new way for realizing high-performance photodetection based on 2D vdWs heterojunctions with high responsivity and fast response speed.
基金supported by the National Natural Science Foundation of China (No. 61370188)Beijing Higher Education Young Elite Teacher Project+1 种基金Fundamental Research Funds for the Central Universities (Nos. 2014CLJH09 and 2014GCYY05)Research Funds of Information Security Key Laboratory of Beijing Electronic Science and Technology Institute
文摘Several public-key encryption schemes used to solve the problem of ciphertext data processing on the fly are discussed. A new targeted fully homomorphic encryption scheme based on the discrete logarithm problem is presented. Public-key encryption cryptosystems are classified to examine homomorphic encryption. Without employing techniques proposed by Gentry such as somewhat homomorphic and bootstrapping techniques, or relinearization technique proposed by Brakerski et al., a new method called "Double Decryption Algorithm" is employed in our cryptography to satisfy a fully or targeted fully homomorphic property. Inspired by EIGamal and BGN cryptography, we obtain the desired fully homomorphic property by selecting a new group and adding an extra component to the ciphertext. Proof of semantic security is also demonstrated.
基金This work was supported by the“Electronic Information Engineering”and“Information Security”national first-class undergraduate major construction project.Advanced discipline construction project in Beijing(No.3201023).
文摘Blockchain technologies have been applied in many areas,from economics,the internet of things to the industrial internet.In order to solve the issue that the Hyperledger Fabric does not currently support Chinese Commercial Cryptographic(CCC)algorithms,we extended the Blockchain Cryptographic Service Provider(BCCSP)module in the Hyperledger Fabric by upgrading the original BCCSP module to support the CCC algorithms SM2 and SM3.Furthermore,we designed a transaction process by using UBCCSP(Upgraded BCCSP),and a new smart contract also has been presented.After that,an improved consortium blockchain information system based on UBCCSP named UCBIS(Consortium Blockchain Information System based on UBCCSP)is proposed.In the Hyperledger Fabric transaction process,the identity information and transaction data are protected by the SM2 and SM3 algorithms,moreover,SM3 is also used in the construction process of smart contracts.Our smart contracts reduce the total data amount and improve query efficiency.Finally,the information query system based on UBCCSP is implemented.After being tested and analyzed,the average time for every query is only 31.162 ms in the blockchain system,which has better performance and higher query efficiency.
基金National Natural Science Foundation of China(12004261,12174264,61775142,62075138,92050203)Natural Science Foundation of Guangdong Province(2021A1515011909)Shenzhen Fundamental Research Program(JCYJ20190808164007485,JCYJ20190808115601653,JCYJ20190808121817100,JCYJ20190808143419622,JCYJ20200109105606426)。
文摘This paper presents a novel design for single-shot terahertz polarization detection based on terahertz time-domain spectroscopy(THz-TDS).Its validity has been confirmed by comparing its detection results with those of the THz common-path spectral interferometer through two separate measurements for the orthogonal components.Our results also show that its detection signal-to-noise ratios(SNRs)are obviously superior to those of the 45°optical bias THz-TDS by electro-optical sampling due to its operation on common-path spectral interference rather than the polarization-sensitive intensity modulation.The setup works without need of any optical scan,which does not only save time,but also efficiently avoids the disturbances from the fluctuations of the system and environment.Its single-shot mode allows it to work well for the applications with poor or no repeatability.