期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于GF-1卫星影像的金川县泥石流沟空间分布特征研究 被引量:6
1
作者 熊俊楠 刘志奇 +3 位作者 苏鹏程 龚颖 叶冲冲 朱吉龙 《自然灾害学报》 CSCD 北大核心 2019年第2期160-168,共9页
泥石流的空间分布、发育特征是区域泥石流监测预警、风险评价等防灾减灾工作的基础。四川省金川县地处川西高原区,泥石流频发,本文以GF-1遥感影像为数据源,建立泥石流沟解译标志,共解译确定泥石流沟256处。利用GIS空间分析方法对泥石流... 泥石流的空间分布、发育特征是区域泥石流监测预警、风险评价等防灾减灾工作的基础。四川省金川县地处川西高原区,泥石流频发,本文以GF-1遥感影像为数据源,建立泥石流沟解译标志,共解译确定泥石流沟256处。利用GIS空间分析方法对泥石流沟分布与高程、坡度、水系和地层岩性的关系进行定量分析,研究了金川县泥石流沟的空间分布规律及特征。分析了金川县各泥石流沟流域形态、沟床纵比降、沟道坡岸特征,结果表明:(1)区内泥石流分布受水系、高程、坡度、地层岩性影响明显,主要分布于大金川及其支流区域的咯尔、庆宁、河东、河西、独松、卡撒等乡镇,高程2000~3000m的区域共有泥石流沟197处,占总数量的77%,坡度15°~30°的区域,共有泥石流沟134处,占总数量的52%,砂岩、板岩区域,有泥石流沟225处,占总数量的88%;(2)区内泥石流沟流域形状比均介于0.15~1.2之间,其中形状比0.2~0.4之间的有161条,占总数量的62.9%,表明泥石流沟以长圆形为主,有利于水流汇集,具有充足的水动力条件,71%的泥石流沟道沟床纵比降介于200‰~600‰之间,多为易发性泥石流沟床坡降,泥石流沟岸坡坡度介于25°~70°这一泥石流高易发坡度区的面积为1414.79km2,占全县所有泥石流沟总面积的60.4%,表明金川县泥石流沟道多为高易发泥石流区。其研究结果对金川县泥石流监测预警、风险分析和科学减灾决策等具有重要的理论和现实意义。 展开更多
关键词 金川县 泥石流 遥感解译 空间分布特征 泥石流发育特征
下载PDF
不同剂量瑞马唑仑在ICU机械通气患者中的 镇静效果及对血流动力学的影响 被引量:19
2
作者 叶冲冲 谢永鹏 +4 位作者 骆继业 陈晓兵 王静 陆思烨 王言理 《中国医药导报》 2021年第22期121-124,共4页
目的观察不同剂量瑞马唑仑在重症监护室(ICU)机械通气患者中的镇静效果及对血流动力学的影响。方法选取2020年8月至12月入住江苏省连云港市第一人民医院ICU需机械通气患者90例,依据随机数字表法分为研究1组、研究2组、研究3组,每组30例... 目的观察不同剂量瑞马唑仑在重症监护室(ICU)机械通气患者中的镇静效果及对血流动力学的影响。方法选取2020年8月至12月入住江苏省连云港市第一人民医院ICU需机械通气患者90例,依据随机数字表法分为研究1组、研究2组、研究3组,每组30例,分别采用瑞马唑仑0.2、0.3、0.4 mg/(kg·h)静脉给药镇静。比较三组的镇静效果,记录三组给药前(T0)、给药后即刻(T1)、给药1 h(T2)、给药6 h(T3)平均动脉压(MAP)与心率(HR)变化,记录三组不良反应发生情况。结果研究2组和研究3组达到目标镇静时间短于研究1组,停药后恢复时间长于研究1组,差异有统计学意义(P<0.05);研究3组达到目标镇静时间短于研究2组,停药后恢复时间长于研究2组,差异有统计学意义(P<0.05)。三组T2时MAP、HR低于T0、T1时,且T3时MAP、HR高于T2时,差异有统计学意义(P<0.05);三组间相同点MAP、HR比较,差异无统计学意义(P>0.05)。研究3组不良反应发生率高于研究1组、研究2组,差异有统计学意义(P<0.05);研究1组与研究2组不良反应发生率比较,差异无统计学意义(P>0.05)。结论瑞马唑仑应用于ICU机械通气患者中的镇静效果满意,且对血流动力学影响小、安全性好,以0.3 mg/(kg·h)剂量最佳。 展开更多
关键词 瑞马唑仑 机械通气 镇静 血流动力学
下载PDF
Quantitative Assessment of the Effects of Climate Change and Human Activities on Grassland NPP in Altay Prefecture 被引量:2
3
作者 TIAN Jie XIONG Junnan +4 位作者 ZHANG Yichi CHENG Weiming HE Yuchuan ye chongchong HE Wen 《Journal of Resources and Ecology》 CSCD 2021年第6期743-756,共14页
Grassland degradation in Altay Prefecture is of considerable concern as it is a threat that hinders the sustainable development of the local economy and the stable operation of the livestock industry.Quantitative asse... Grassland degradation in Altay Prefecture is of considerable concern as it is a threat that hinders the sustainable development of the local economy and the stable operation of the livestock industry.Quantitative assessment of the relative contributions of climate change and human activities,which are considered as the dominant triggers of grassland degradation,to grassland variation is crucial for understanding the grassland degradation mechanism and mitigating the degraded grassland in Altay Prefecture.In this paper,the Carnegie-Ames-Stanford Approach model and the Thornthwaite memorial model were adopted to simulate the actual net primary productivity(NPP_(A))and potential net primary productivity(NPP_(P))in the Altay Prefecture from 2000 to 2019.Meanwhile,the difference between potential NPP and actual NPP was employed to reflect the effects of human activities(NPP_(H))on the grassland.On this basis,we validated the viability of the simulated NPP using the Pearson correlation coefficient,investigated the spatiotemporal variability of grassland productivity,and established comprehensive scenarios to quantitatively assess the relative roles of climate change and human activities on grassland in Altay prefecture.The results indicate three main points.(1)The simulated NPP_(A) was highly consistent with the MOD17 A3 dataset in spatial distribution.(2)Regions with an increased NPP_(A) accounted for 70.53% of the total grassland,whereas 29.47% of the total grassland area experienced a decrease.At the temporal scale,the NPP_(A) presented a slightly increasing trend(0.83 g C m^(-2) yr^(-1))over the study period,while the trends of NPP_(P) and NPP_(H) were reduced(-1.31 and-2.15 g C m^(-2) yr^(-1)).(3)Compared with climate change,human activities played a key role in the process of grassland restoration,as 66.98% of restored grassland resulted from it.In contrast,inter-annual climate change is the primary cause of grassland degradation,as it influenced 55.70% of degraded grassland.These results could shed light on the mechanisms of grassland variation caused by climate change and human activities,and they can be applied to further develop efficient measures to combat desertification in Altay Prefecture. 展开更多
关键词 grassland degradation net primary productivity climate change human activities Altay Prefecture
原文传递
Spatiotemporal Pattern and Driving Force Analysis of Vegetation Variation in Altay Prefecture based on Google Earth Engine 被引量:1
4
作者 HE Yuchuan XIONG Junnan +5 位作者 ABUDUMANAN·Ahemaitihali CHENG Weiming ye chongchong HE Wen YONG Zhiwei TIAN Jie 《Journal of Resources and Ecology》 CSCD 2021年第6期729-742,共14页
Quantitative evaluation and driving mechanism analysis of vegetation dynamics are essential for promoting regional sustainable development.In the past 20 years,the ecological environment in Altay Prefecture has change... Quantitative evaluation and driving mechanism analysis of vegetation dynamics are essential for promoting regional sustainable development.In the past 20 years,the ecological environment in Altay Prefecture has changed significantly due to global warming.Meanwhile,with increasing human activities,the spatiotemporal pattern and driving forces of vegetation variation in the area are uncertain and difficult to accurately assess.Hence,we quantified the vegetation growth by using the Normalized Difference Vegetation Index(NDVI)on the Google Earth Engine(GEE).Then,the spatiotemporal patterns of vegetation from 2000 to 2019 were analyzed at the pixel scale.Finally,significance threshold segmentation was performed using meteorological data based on the correlation analysis results,and the contributions of climate change and human activities to vegetation variation were quantified.The results demonstrated that the vegetation coverage in Altay Prefecture is mainly concentrated in the north.The vegetation areas representing significant restoration and degradation from 2000 to 2019 accounted for 24.08% and 1.24% of Altay Prefecture,respectively.Moreover,spatial correlation analysis showed that the areas with significant correlations between NDVI and temperature,precipitation and sunlight hours accounted for 3.3%,6.9% and 20.3% of Altay Prefecture,respectively.In the significant restoration area,18.94% was dominated by multiple factors,while 3.4% was dominated by human activities,and 1.74% was dominated by climate change.Within the significant degradation area,abnormal degradation and climate change controlled 1.07% and 0.17%,respectively.This study revealed the dynamic changes of vegetation and their driving mechanisms in Altay Prefecture,and can provide scientific support for further research on life community mechanism theory and key remediation technology of mountain-water-forest-farmland-lake-grass in Altay Prefecture. 展开更多
关键词 vegetation variation climate change human activities driving mechanism Google Earth Engine Altay Prefecture
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部