Transcutaneous electrical nerve stimulation(TENS) has been widely used for sensory feedback which is a key consideration of improving the performance of prosthetic hands. Two-electrode discriminability is the key to r...Transcutaneous electrical nerve stimulation(TENS) has been widely used for sensory feedback which is a key consideration of improving the performance of prosthetic hands. Two-electrode discriminability is the key to realize high-spatial-resolution TENS, but the neural firing mechanism is not clear yet. The goal of this research is to investigate the neural firing patterns under two-electrode stimulation and to reveal the potential mechanisms. A three-dimensional(3 D) model is established by incorporating Aβ fiber neuron clusters into a layered forearm structure. The diameters of the stimulating electrodes are selected as 5, 7, 9 and 12 mm, and the two-electrode discrimination distance(TEDD) is quantified. It is found that a distant TEDD is obtained for a relatively large electrode size, and 7 mm is suggested to be the optimal diameter of stimulating electrodes. The present study reveals the neural firing patterns under two-electrode stimulation by the 3 D TENS model. In order to discriminate individual electrodes under simultaneous stimulation, no crosstalk of activated Aβ fibers exists between two electrodes. This research can further guide the optimization of the electrode-array floorplan.展开更多
基金the National Natural Science Foundation of China(No.81671801)the Innovation Studio Fund from School of Biomedical Engineering at Shanghai Jiao Tong Universitythe Medical-Engineering Cross Project of Shanghai Jiao Tong University(No.YG2017MS53)
文摘Transcutaneous electrical nerve stimulation(TENS) has been widely used for sensory feedback which is a key consideration of improving the performance of prosthetic hands. Two-electrode discriminability is the key to realize high-spatial-resolution TENS, but the neural firing mechanism is not clear yet. The goal of this research is to investigate the neural firing patterns under two-electrode stimulation and to reveal the potential mechanisms. A three-dimensional(3 D) model is established by incorporating Aβ fiber neuron clusters into a layered forearm structure. The diameters of the stimulating electrodes are selected as 5, 7, 9 and 12 mm, and the two-electrode discrimination distance(TEDD) is quantified. It is found that a distant TEDD is obtained for a relatively large electrode size, and 7 mm is suggested to be the optimal diameter of stimulating electrodes. The present study reveals the neural firing patterns under two-electrode stimulation by the 3 D TENS model. In order to discriminate individual electrodes under simultaneous stimulation, no crosstalk of activated Aβ fibers exists between two electrodes. This research can further guide the optimization of the electrode-array floorplan.