Mg-Ni multi-layer thin film was deposited on (001) Si wafer by magnetron sputtering with dual-target. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis reveal that the microstructure of the Mg-Ni...Mg-Ni multi-layer thin film was deposited on (001) Si wafer by magnetron sputtering with dual-target. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis reveal that the microstructure of the Mg-Ni multilayer thin film is composed of fine-crystalline Ni layer and crystalline [001] Mg layer. Hydrogenation process of the films were carried out by using the automatic gas reaction controller. The films undergone hydrogenation for different time were analyzed by XRD. The results show that hydrogenation properties of Mg with different preferential orientations are different. (002) diffraction peak of Mg disappears in compensating the appearing of the peaks of Mg2NiH4 and MgH2 in hydrogenation at 533 K, while the (101) peak still remains. The result reveals that the Mg film with (001) preferential orientation absorbs hydrogen at certain temperature easier than that of the Mg film with (101) orientation. This phenomenon can be explained in the view point of the energy change for the nucleation and growth of hydride in different crystal plane.展开更多
基金This work was financially supported by the National Natural Science Foundation of China (No. 50401015), the Ministry of Education (No. IRT0551) and Guangdong Provincial Natural Science Foundation (Team project).
文摘Mg-Ni multi-layer thin film was deposited on (001) Si wafer by magnetron sputtering with dual-target. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis reveal that the microstructure of the Mg-Ni multilayer thin film is composed of fine-crystalline Ni layer and crystalline [001] Mg layer. Hydrogenation process of the films were carried out by using the automatic gas reaction controller. The films undergone hydrogenation for different time were analyzed by XRD. The results show that hydrogenation properties of Mg with different preferential orientations are different. (002) diffraction peak of Mg disappears in compensating the appearing of the peaks of Mg2NiH4 and MgH2 in hydrogenation at 533 K, while the (101) peak still remains. The result reveals that the Mg film with (001) preferential orientation absorbs hydrogen at certain temperature easier than that of the Mg film with (101) orientation. This phenomenon can be explained in the view point of the energy change for the nucleation and growth of hydride in different crystal plane.