Using Jacobi elliptic function linear superposition approach for the (1+1)-dimensional Caudrey–Dodd–Gibbon–Sawada–Kotera (CDGSK) equation and the (2+1)-dimensional Nizhnik–Novikov–Veselov (NNV) equation, many ne...Using Jacobi elliptic function linear superposition approach for the (1+1)-dimensional Caudrey–Dodd–Gibbon–Sawada–Kotera (CDGSK) equation and the (2+1)-dimensional Nizhnik–Novikov–Veselov (NNV) equation, many new periodic travelling wave solutions with different periods and velocities are obtained based on the known periodic solutions. This procedure is crucially dependent on a sequence of cyclic identities involving Jacobi elliptic functions sn(), cn(), and dn().展开更多
文摘Using Jacobi elliptic function linear superposition approach for the (1+1)-dimensional Caudrey–Dodd–Gibbon–Sawada–Kotera (CDGSK) equation and the (2+1)-dimensional Nizhnik–Novikov–Veselov (NNV) equation, many new periodic travelling wave solutions with different periods and velocities are obtained based on the known periodic solutions. This procedure is crucially dependent on a sequence of cyclic identities involving Jacobi elliptic functions sn(), cn(), and dn().