Two ecotypes of Elsholtzia, Elsholtzia splendens and E. argyi, are dominantplants growing on Cu and Pb-Zn smelters, respectively. Samples of the two ecotypes and thecorresponding soils from fields of a copper mining a...Two ecotypes of Elsholtzia, Elsholtzia splendens and E. argyi, are dominantplants growing on Cu and Pb-Zn smelters, respectively. Samples of the two ecotypes and thecorresponding soils from fields of a copper mining area and a Pb-Zn mining area ofZhejiang Province,China, were analyzed to investigate Cu or Zn tolerance of these two ecotypes. Effects of nine Culevels (0, 5, 10, 20, 40, 80, 160, 240 and 320 mg Cu L^(-1) as CuSO_4 centre dot 5H_O) on growth anduptake, translocation and accumulation of Cu in these two ecotypes were examined in a solutionculture experiment. The experimental results showed that dry weights (DW) of shoots and roots weredepressed, and growth of E. splendens was less depressed than that of E. argyi when treated with>= 5mg Cu L^(-1). Concentrations of Cu in shoots of E. splendens and E. argyi exceeded 1000 mg kg^(-1)DW at >= 40 mg Cu L^(-1). The maximum Cu accumulated in the shoots of Cu-treated E. splendens and E.argyi reached 101 and 142 mu g plant^(-1). Furthermore, analysis of plant samples from the fieldsshowed that these two ecotypes can tolerant excess heavy metals and produced high dry matter, and E.splendens can accumulate 11.7 mg Cu plant^(-1) grown on the Cu smelter. Therefore, E. splendens andE.argyi could be good plants for phytoremediation.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 29977017)
文摘Two ecotypes of Elsholtzia, Elsholtzia splendens and E. argyi, are dominantplants growing on Cu and Pb-Zn smelters, respectively. Samples of the two ecotypes and thecorresponding soils from fields of a copper mining area and a Pb-Zn mining area ofZhejiang Province,China, were analyzed to investigate Cu or Zn tolerance of these two ecotypes. Effects of nine Culevels (0, 5, 10, 20, 40, 80, 160, 240 and 320 mg Cu L^(-1) as CuSO_4 centre dot 5H_O) on growth anduptake, translocation and accumulation of Cu in these two ecotypes were examined in a solutionculture experiment. The experimental results showed that dry weights (DW) of shoots and roots weredepressed, and growth of E. splendens was less depressed than that of E. argyi when treated with>= 5mg Cu L^(-1). Concentrations of Cu in shoots of E. splendens and E. argyi exceeded 1000 mg kg^(-1)DW at >= 40 mg Cu L^(-1). The maximum Cu accumulated in the shoots of Cu-treated E. splendens and E.argyi reached 101 and 142 mu g plant^(-1). Furthermore, analysis of plant samples from the fieldsshowed that these two ecotypes can tolerant excess heavy metals and produced high dry matter, and E.splendens can accumulate 11.7 mg Cu plant^(-1) grown on the Cu smelter. Therefore, E. splendens andE.argyi could be good plants for phytoremediation.