Water samples were collected and analyzed in high water season (July 1997) and in middle water season (October, 1997) from two main lower reach gauge stations of the Zhujiang (Pearl) River, namely Hekou and Makou, res...Water samples were collected and analyzed in high water season (July 1997) and in middle water season (October, 1997) from two main lower reach gauge stations of the Zhujiang (Pearl) River, namely Hekou and Makou, respectively. Content of particulate organic carbon is always higher than that of dissolved organic carbon in both seasons, which is obviously different from the global average pattern, i.e. dissolved organic carbon is the dominant component of the transported riverine organic carbon. The content of dissolved and particulate organic carbon changes with the water levels in a direct ratio. The percentage of organic carbon in total suspended substance changes with the content of total suspended substance in an inverse ratio. The more intense is the soil erosion in the drainage, the more concentrated is the riverine organic carbon in the river. The contribution of autochthonous organic carbon is larger in high water season than in middle water season.展开更多
基金This project was supported financially by the National Natural Science Foundation of China(No.49901002)the key funds of resources and eco-cnvironmental research of the CAS.(No.KZ952-J1-402)+1 种基金a funds of the state key lasoratory of organic geochemistryGuangdong Province Science Funds(No.984131).
文摘Water samples were collected and analyzed in high water season (July 1997) and in middle water season (October, 1997) from two main lower reach gauge stations of the Zhujiang (Pearl) River, namely Hekou and Makou, respectively. Content of particulate organic carbon is always higher than that of dissolved organic carbon in both seasons, which is obviously different from the global average pattern, i.e. dissolved organic carbon is the dominant component of the transported riverine organic carbon. The content of dissolved and particulate organic carbon changes with the water levels in a direct ratio. The percentage of organic carbon in total suspended substance changes with the content of total suspended substance in an inverse ratio. The more intense is the soil erosion in the drainage, the more concentrated is the riverine organic carbon in the river. The contribution of autochthonous organic carbon is larger in high water season than in middle water season.