We studied the records of elemental carbon (EC) of the last 21 ka in the Weinan loess section, Shanxi Province. The variations of EC abundance and δ13CEC value along with depth (or age) were presented. There are four...We studied the records of elemental carbon (EC) of the last 21 ka in the Weinan loess section, Shanxi Province. The variations of EC abundance and δ13CEC value along with depth (or age) were presented. There are four large peaks of EC abundance around the following years: 20.16 ka, 17.76 ka, 11.97 ka and 4.49 ka. Climatic situation was changed rapidly during these periods. The peaks around 11.97 ka and 20.16 ka are particularly sharp, occurring over intervals of tens to hundreds of years, which could represent short-duration intense events. δ13CEc values in the upper 4 m of the Weinan loess section vary between -11.71‰ and -21.34‰, which suggests that the vegetation pattern of the last 21 ka on the Loess Plateau is G4-dominated grasses.展开更多
Carbon isotopic compositions of soil CO2 in rainy season (July) from two natural soil profiles (DHLS & DHS) in the monsoon evergreen broadleaf forest in the Dinghushan Biosphere Reservoir (DBR),South China,are pre...Carbon isotopic compositions of soil CO2 in rainy season (July) from two natural soil profiles (DHLS & DHS) in the monsoon evergreen broadleaf forest in the Dinghushan Biosphere Reservoir (DBR),South China,are presented.Turnover and origins of soil CO2 are preliminarily discussed in this paper.Results show that the content of soil CO2 varies between 6120 and 18718 ppmv,and increases with increasing depth until 75 cm,and then it declines.In DHLS,soil CO2 δ 13C ranges from -24.71‰ to -24.03‰,showing a significant inverse correlation (R2=0.91) with the soil CO2 content in the same layer.According to a model related to soil CO2 δ 13C,the soil CO2 is mainly derived from the root respiration (>80%) in DHLS.While in DHS,where soil CO2 δ 13C ranges from -25.19‰ to -22.82‰,soil CO2 is primarily originated from the decomposition of organic matter (51%–94%),excluding the surface layer (20 cm,90%).Radiocarbon data suggest that the carbon in soil CO2 is modern carbon in both DHLS and DHS.Differences in 14C ages between the "oldest" and "youngest" soil CO2 in DHLS and DHS are 8 months and 14 months,respectively,indicating that soil CO2 in DHLS has a faster turnover rate than that in DHS.The Δ14C values of soil CO2,which range between 100.0‰ and 107.2‰ and between 102.5‰ and 112.1‰ in DHLS and DHS,respectively,are obviously higher than those of current atmospheric CO2 and SOC in the same layer,suggesting that soil CO2 is likely an important reservoir for Bomb-14C in the atmosphere.展开更多
The history of natural fire and its rela- tionship with climate and vegetation are revealed from the content of elemental carbon and associated pollen data and paleoclimatic substitutive indicators for the loess of Li...The history of natural fire and its rela- tionship with climate and vegetation are revealed from the content of elemental carbon and associated pollen data and paleoclimatic substitutive indicators for the loess of Lingtai Section in the last 370 ka BP. The study indicates that intense episodes of vegeta- tion fires occurred during the interim especially when the climate was changing from wet to drought. The average content of elemental carbon in the intergla- ciers is higher than that in the glaciers, which coin- cides with the biomass change locally (or globally). The content of elemental carbon increases in the stage around 130 ka BP, indicating that the vegeta- tion and climate pattern have changed, which may contribute to the variation of CO2. As a whole, the content of elemental carbon increasing with the time reflects the increasing aridity trend to some degree. In addition, the occurrence of the maximum peak and the highest average content of elemental carbon in the Holocene reflects the occurrence of a rapid cli- mate event in 5900 a BP and more frequent fires caused by anthropic activities.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No. 49773186) the National Key Basic Research Project (Grant No. G1999043401) the Natural Resources and Environment Program, the CAS (Grant Nos. KZ951-A1-402-08-01 and
文摘We studied the records of elemental carbon (EC) of the last 21 ka in the Weinan loess section, Shanxi Province. The variations of EC abundance and δ13CEC value along with depth (or age) were presented. There are four large peaks of EC abundance around the following years: 20.16 ka, 17.76 ka, 11.97 ka and 4.49 ka. Climatic situation was changed rapidly during these periods. The peaks around 11.97 ka and 20.16 ka are particularly sharp, occurring over intervals of tens to hundreds of years, which could represent short-duration intense events. δ13CEc values in the upper 4 m of the Weinan loess section vary between -11.71‰ and -21.34‰, which suggests that the vegetation pattern of the last 21 ka on the Loess Plateau is G4-dominated grasses.
基金supported by the National Natural Science Foundation of China (40231015 and 40473002)the National Basic Research Program of China (2005CB422004)the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-SW-133)
文摘Carbon isotopic compositions of soil CO2 in rainy season (July) from two natural soil profiles (DHLS & DHS) in the monsoon evergreen broadleaf forest in the Dinghushan Biosphere Reservoir (DBR),South China,are presented.Turnover and origins of soil CO2 are preliminarily discussed in this paper.Results show that the content of soil CO2 varies between 6120 and 18718 ppmv,and increases with increasing depth until 75 cm,and then it declines.In DHLS,soil CO2 δ 13C ranges from -24.71‰ to -24.03‰,showing a significant inverse correlation (R2=0.91) with the soil CO2 content in the same layer.According to a model related to soil CO2 δ 13C,the soil CO2 is mainly derived from the root respiration (>80%) in DHLS.While in DHS,where soil CO2 δ 13C ranges from -25.19‰ to -22.82‰,soil CO2 is primarily originated from the decomposition of organic matter (51%–94%),excluding the surface layer (20 cm,90%).Radiocarbon data suggest that the carbon in soil CO2 is modern carbon in both DHLS and DHS.Differences in 14C ages between the "oldest" and "youngest" soil CO2 in DHLS and DHS are 8 months and 14 months,respectively,indicating that soil CO2 in DHLS has a faster turnover rate than that in DHS.The Δ14C values of soil CO2,which range between 100.0‰ and 107.2‰ and between 102.5‰ and 112.1‰ in DHLS and DHS,respectively,are obviously higher than those of current atmospheric CO2 and SOC in the same layer,suggesting that soil CO2 is likely an important reservoir for Bomb-14C in the atmosphere.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 40231015, 40473002)Knowledge Innovation Project of the Chinese Academy of Sciences (Grant Nos. KZCX2-SW-118, GIGCX-03-06, GIGCX-04-05).
文摘The history of natural fire and its rela- tionship with climate and vegetation are revealed from the content of elemental carbon and associated pollen data and paleoclimatic substitutive indicators for the loess of Lingtai Section in the last 370 ka BP. The study indicates that intense episodes of vegeta- tion fires occurred during the interim especially when the climate was changing from wet to drought. The average content of elemental carbon in the intergla- ciers is higher than that in the glaciers, which coin- cides with the biomass change locally (or globally). The content of elemental carbon increases in the stage around 130 ka BP, indicating that the vegeta- tion and climate pattern have changed, which may contribute to the variation of CO2. As a whole, the content of elemental carbon increasing with the time reflects the increasing aridity trend to some degree. In addition, the occurrence of the maximum peak and the highest average content of elemental carbon in the Holocene reflects the occurrence of a rapid cli- mate event in 5900 a BP and more frequent fires caused by anthropic activities.