[Objectives] This study was conducted to investigate the toxic effect of acetochlor in loaches. [Methods]Loaches were put into the acetochlor solution with concentrations of 0,0. 062 5,0. 125,0. 25,0. 5 and 1 μl/L,re...[Objectives] This study was conducted to investigate the toxic effect of acetochlor in loaches. [Methods]Loaches were put into the acetochlor solution with concentrations of 0,0. 062 5,0. 125,0. 25,0. 5 and 1 μl/L,respectively. The effects on dismutase( SOD),peroxidase( POD),catalase( CAT) and glutathione( GSH) activity and malondialdehyde( MDA) content in the liver of loaches were analyzed after 12,24,48 and 72 h of exposure. [Results] The activity of SOD,POD,CAT and GSH increased with the stress time and concentration,reached their maximums at 48 h after acetochlor treatment,and then decreased.However,MDA content increased with the stress time and concentration. [Conclusions] Acetochlor had obvious oxidative stress on loaches,and the activity of SOD,POD,CAT and GSH showed an obvious induction-inhibition effect with the increase of acetochlor concentration and the extension of stress time.展开更多
Threatened animals respond with appropriate defensive behaviors to survive.It has been accepted that midbrain periaqueductal gray(PAG)plays an essential role in the circuitry system and organizes defensive behavioral ...Threatened animals respond with appropriate defensive behaviors to survive.It has been accepted that midbrain periaqueductal gray(PAG)plays an essential role in the circuitry system and organizes defensive behavioral responses.However,the role and correlation of different PAG subregions in the expression of different defensive behaviors remain largely unexplored.Here,we designed and manufactured a microelectrode array(MEA)to simultaneously detect the activities of dPAG and vPAG neurons in freely behaving rats.To improve the detection performance of the MEAs,PtNP/PEDOT:PSS nanocomposites were modified onto the MEAs.Subsequently,the predator odor was used to induce the rat’s innate fear,and the changes and information transmission in neuronal activities were detected in the dPAG and vPAG.Our results showed that the dPAG and vPAG participated in innate fear,but the activation degree was distinct in different defense behaviors.During flight,neuronal responses were stronger and earlier in the dPAG than the vPAG,while vPAG neurons responded more strongly during freezing.By applying high-performance MEA,it was revealed that neural information spread from the activated dPAG to the weakly activated vPAG.Our research also revealed that dPAG and vPAG neurons exhibited different defensive discharge characteristics,and dPAG neurons participated in the regulation of defense responses with burst-firing patterns.The slow activation and continuous firing of vPAG neurons cooresponded with the regulation of long-term freezing responses.The results demonstrated the important role of PAG neuronal activities in controlling different aspects of defensive behaviors and provided novel insights for investigating defense from the electrophysiological perspective.展开更多
Nanophotonic waveguides hold great promise to achieve chip-scale gas sensors. However, their performance is limited by a short light path and small light–analyte overlap. To address this challenge, silicon-based, slo...Nanophotonic waveguides hold great promise to achieve chip-scale gas sensors. However, their performance is limited by a short light path and small light–analyte overlap. To address this challenge, silicon-based, slow-lightenhanced gas-sensing techniques offer a promising approach. In this study, we experimentally investigated the slow light characteristics and gas-sensing performance of 1D and 2D photonic crystal waveguides(PCWs) in the near-IR(NIR) region. The proposed 2D PCW exhibited a high group index of up to 114, albeit with a high propagation loss. The limit of detection(LoD) for acetylene(C_(2)H_(2)) was 277 parts per million(ppm) for a1 mm waveguide length and an averaging time of 0.4 s. The 1D PCW shows greater application potential compared to the 2D PCW waveguide, with an interaction factor reaching up to 288%, a comparably low propagation loss of 10 dB/cm, and an LoD of 706 ppm at 0.4 s. The measured group indices of the 2D and 1D waveguides are104 and 16, respectively, which agree well with the simulation results.展开更多
Grid cells with stable hexagonal firing patterns in the medial entorhinal cortex(MEC)carry the vital function of serving as a metric for the surrounding environment.Whether this mechanism processes only spatial inform...Grid cells with stable hexagonal firing patterns in the medial entorhinal cortex(MEC)carry the vital function of serving as a metric for the surrounding environment.Whether this mechanism processes only spatial information or involves nonspatial information remains elusive.Here,we fabricated an MEC-shaped microelectrode array(MEA)to detect the variation in neural spikes and local field potentials of the MEC when rats forage in a square enclosure with a planar,three-dimensional object and social landmarks in sequence.The results showed that grid cells exhibited rate remapping under social conditions in which spike firing fields closer to the social landmark had a higher firing rate.Furthermore,global remapping showed that hexagonal firing patterns were rotated and scaled when the planar landmark was replaced with object and social landmarks.In addition,when grid cells were activated,the local field potentials were dominated by the theta band(5–8 Hz),and spike phase locking was observed at troughs of theta oscillations.Our results suggest the pattern separation mechanism of grid cells in which the spatial firing structure and firing rate respond to spatial and social information,respectively,which may provide new insights into how the brain creates a cognitive map.展开更多
Fluorescence-based white-light-emitting diodes (WLEDs) were fabricated using blue GaN chips and green- and red-emitting CdSe/CdS/ZnS quantum dots (QDs). The coordinate and color temperature of the WLEDs could be v...Fluorescence-based white-light-emitting diodes (WLEDs) were fabricated using blue GaN chips and green- and red-emitting CdSe/CdS/ZnS quantum dots (QDs). The coordinate and color temperature of the WLEDs could be varied because of the size-tunable emission of CdSe QDs from 510 to 620 nm. Warm and cold white emissions were confirmed with the color temperature ranging from 4000 to 9000 K. Color coordinates were analyzed at different bias. The fast enhancement of blue emission resulted in the shift of color coordinates to the cold side. The stability of white emission during operation was analyzed; stable spectra were achieved within 90 min.展开更多
Deep brain stimulation(DBS),including optical stimulation and electrical stimulation,has been demonstrated considerable value in exploring pathological brain activity and developing treatments for neural disorders.Adv...Deep brain stimulation(DBS),including optical stimulation and electrical stimulation,has been demonstrated considerable value in exploring pathological brain activity and developing treatments for neural disorders.Advances in DBS microsystems based on implantable microelectrode array(MEA)probes have opened up new opportunities for closed-loop DBS(CL-DBS)in situ.This technology can be used to detect damaged brain circuits and test the therapeutic potential for modulating the output of these circuits in a variety of diseases simultaneously.Despite the success and rapid utilization of MEA probe-based CL-DBS microsystems,key challenges,including excessive wired communication,need to be urgently resolved.In this review,we considered recent advances in MEA probe-based wireless CL-DBS microsystems and outlined the major issues and promising prospects in this field.This technology has the potential to offer novel therapeutic options for psychiatric disorders in the future.展开更多
基金Supported by the Hunan Provincial Science and Technology Innovation Plan Program (NO. 2019NK4170)the Important Project of Hunan Province Education Department (NO. 19A259)。
文摘[Objectives] This study was conducted to investigate the toxic effect of acetochlor in loaches. [Methods]Loaches were put into the acetochlor solution with concentrations of 0,0. 062 5,0. 125,0. 25,0. 5 and 1 μl/L,respectively. The effects on dismutase( SOD),peroxidase( POD),catalase( CAT) and glutathione( GSH) activity and malondialdehyde( MDA) content in the liver of loaches were analyzed after 12,24,48 and 72 h of exposure. [Results] The activity of SOD,POD,CAT and GSH increased with the stress time and concentration,reached their maximums at 48 h after acetochlor treatment,and then decreased.However,MDA content increased with the stress time and concentration. [Conclusions] Acetochlor had obvious oxidative stress on loaches,and the activity of SOD,POD,CAT and GSH showed an obvious induction-inhibition effect with the increase of acetochlor concentration and the extension of stress time.
基金This work was sponsored by the National Natural Science Foundation of China(T2293731,L2224042,61988102,62121003,61960206012,62171434,61971400,61975206,and 61973292)the Frontier Interdisciplinary Project of the Chinese Academy of Sciences(XK2022XXC003)+2 种基金STI 2030-Major Projects 2021ZD0201600the National Key R&D Program of China(2022YFC2402501)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(GJJSTD20210004).
文摘Threatened animals respond with appropriate defensive behaviors to survive.It has been accepted that midbrain periaqueductal gray(PAG)plays an essential role in the circuitry system and organizes defensive behavioral responses.However,the role and correlation of different PAG subregions in the expression of different defensive behaviors remain largely unexplored.Here,we designed and manufactured a microelectrode array(MEA)to simultaneously detect the activities of dPAG and vPAG neurons in freely behaving rats.To improve the detection performance of the MEAs,PtNP/PEDOT:PSS nanocomposites were modified onto the MEAs.Subsequently,the predator odor was used to induce the rat’s innate fear,and the changes and information transmission in neuronal activities were detected in the dPAG and vPAG.Our results showed that the dPAG and vPAG participated in innate fear,but the activation degree was distinct in different defense behaviors.During flight,neuronal responses were stronger and earlier in the dPAG than the vPAG,while vPAG neurons responded more strongly during freezing.By applying high-performance MEA,it was revealed that neural information spread from the activated dPAG to the weakly activated vPAG.Our research also revealed that dPAG and vPAG neurons exhibited different defensive discharge characteristics,and dPAG neurons participated in the regulation of defense responses with burst-firing patterns.The slow activation and continuous firing of vPAG neurons cooresponded with the regulation of long-term freezing responses.The results demonstrated the important role of PAG neuronal activities in controlling different aspects of defensive behaviors and provided novel insights for investigating defense from the electrophysiological perspective.
基金National Natural Science Foundation of China(62175087, 62235016, 61960206004)Key Science and Technology RD Program of Jilin Province,China(20200401059GX, 20230201054GX)+1 种基金Science and Technology Research Project of Department of Education,Jilin Province,China (JJKH20211088KJ)Program for JLU Science and Technology Innovative Research Team(JLUSTIRT, 2021TD-39)。
文摘Nanophotonic waveguides hold great promise to achieve chip-scale gas sensors. However, their performance is limited by a short light path and small light–analyte overlap. To address this challenge, silicon-based, slow-lightenhanced gas-sensing techniques offer a promising approach. In this study, we experimentally investigated the slow light characteristics and gas-sensing performance of 1D and 2D photonic crystal waveguides(PCWs) in the near-IR(NIR) region. The proposed 2D PCW exhibited a high group index of up to 114, albeit with a high propagation loss. The limit of detection(LoD) for acetylene(C_(2)H_(2)) was 277 parts per million(ppm) for a1 mm waveguide length and an averaging time of 0.4 s. The 1D PCW shows greater application potential compared to the 2D PCW waveguide, with an interaction factor reaching up to 288%, a comparably low propagation loss of 10 dB/cm, and an LoD of 706 ppm at 0.4 s. The measured group indices of the 2D and 1D waveguides are104 and 16, respectively, which agree well with the simulation results.
基金sponsored by the National Key R&D Program(Grant No.2017YFA0205902)the National Natural Science Foundation of China(Grant No.62121003,61960206012,61973292,61975206,61971400,and 62171434)+1 种基金the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Grant No.GJJSTD20210004)the Major Program of Scientific and Technical Innovation 2030(No.2021ZD0201603).
文摘Grid cells with stable hexagonal firing patterns in the medial entorhinal cortex(MEC)carry the vital function of serving as a metric for the surrounding environment.Whether this mechanism processes only spatial information or involves nonspatial information remains elusive.Here,we fabricated an MEC-shaped microelectrode array(MEA)to detect the variation in neural spikes and local field potentials of the MEC when rats forage in a square enclosure with a planar,three-dimensional object and social landmarks in sequence.The results showed that grid cells exhibited rate remapping under social conditions in which spike firing fields closer to the social landmark had a higher firing rate.Furthermore,global remapping showed that hexagonal firing patterns were rotated and scaled when the planar landmark was replaced with object and social landmarks.In addition,when grid cells were activated,the local field potentials were dominated by the theta band(5–8 Hz),and spike phase locking was observed at troughs of theta oscillations.Our results suggest the pattern separation mechanism of grid cells in which the spatial firing structure and firing rate respond to spatial and social information,respectively,which may provide new insights into how the brain creates a cognitive map.
基金supported by the National High Technology Research and Development Program 863 of China (2011AA050509)National Natural Science Foundation of China (61106039)+1 种基金National Postdoctoral Foundation(2011049015)Jilin Province Youth Foundation(201101025)
文摘Fluorescence-based white-light-emitting diodes (WLEDs) were fabricated using blue GaN chips and green- and red-emitting CdSe/CdS/ZnS quantum dots (QDs). The coordinate and color temperature of the WLEDs could be varied because of the size-tunable emission of CdSe QDs from 510 to 620 nm. Warm and cold white emissions were confirmed with the color temperature ranging from 4000 to 9000 K. Color coordinates were analyzed at different bias. The fast enhancement of blue emission resulted in the shift of color coordinates to the cold side. The stability of white emission during operation was analyzed; stable spectra were achieved within 90 min.
基金supported by the National Natural Science Foundation of China(Nos.T2293730,T2293731,62121003,61960206012,61973292,62171434,61975206,and 61971400)the National Key Research and Development Program of China(Nos.2022YFC2402501 and 2022YFB3205602)+1 种基金the Major Program of Scientific and Technical Innovation 2030(No.2021ZD02016030)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.GJJSTD20210004).
文摘Deep brain stimulation(DBS),including optical stimulation and electrical stimulation,has been demonstrated considerable value in exploring pathological brain activity and developing treatments for neural disorders.Advances in DBS microsystems based on implantable microelectrode array(MEA)probes have opened up new opportunities for closed-loop DBS(CL-DBS)in situ.This technology can be used to detect damaged brain circuits and test the therapeutic potential for modulating the output of these circuits in a variety of diseases simultaneously.Despite the success and rapid utilization of MEA probe-based CL-DBS microsystems,key challenges,including excessive wired communication,need to be urgently resolved.In this review,we considered recent advances in MEA probe-based wireless CL-DBS microsystems and outlined the major issues and promising prospects in this field.This technology has the potential to offer novel therapeutic options for psychiatric disorders in the future.