期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Establishment of a Highly Efficient Regeneration System for the Mature Embryo Culture of Wheat 被引量:19
1
作者 yin gui-xiang WANG Yan-li +4 位作者 SHE Mao-yun DU Li-pu XU Hui-jun MA Jing-xiu YE Xing-guo 《Agricultural Sciences in China》 CAS CSCD 2011年第1期9-17,共9页
Establishment of a highly efficient regeneration system for the mature embryo of wheat will provide a convenient tool for wheat tissue culture and transformation, thereby facilitating the transformation of foreign gen... Establishment of a highly efficient regeneration system for the mature embryo of wheat will provide a convenient tool for wheat tissue culture and transformation, thereby facilitating the transformation of foreign genes into wheat. By using the mature embryos derived from 20 different wheat lines including Shi 4185, Yumai 66, Lunxuan 987, CB037, Yangmai 6, Xinchun 9, Bobwhite, Han 6172, Zheng 9023, Jimai 20, Ningchun 4, and Jing 411, the effects of some factors including inoculation methods, initiating culture media, organic additives, antioxidants, and auxins on the regeneration from the explants were evaluated. The results indicated that the scraping embryo culture was better than the whole embryo culture, the Aa medium was better than the SD2 medium and dicamba was better than 2,4-D in increasing the regeneration frequency. An Adi medium was established in this study by adding silver nitrate, cysteine, ascorbic acid, dicamba, glutamine into the Aa medium at the concentration of 4,40, 100, 2, and 5 mg L^-1, respectively. By using the Adi medium and the scraping technique, the regeneration frequencies of the mature embryos of CB037, Lunxuan 987, Hart 6172, Yangmai 6, Bobwhite, Zheng 9023, Shi 4 185, and Jimai 20 became 85.6, 60,1, 46.0, 42.1,42.0, 34.0, 33.0, and 32.0%, respectively, which were about 5-8 times higher than that obtained from the conventional culture mediums and techniques. This novel regeneration system could be helpful in wheat transformation. 展开更多
关键词 WHEAT mature embryo culture scraping treatment Adi medium highly efficient regeneration
下载PDF
Effects of Environmental Temperature on the Regeneration Frequency of the Immature Embryos of Wheat(Triticum aestivum L.) 被引量:7
2
作者 WANG Xin-min REN Xian +5 位作者 yin gui-xiang WANG Ke LI Jia-rui DU Li-pu XU Hui-jun YE Xing-guo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第4期722-732,共11页
The immature embryos (IEs) of wheat are the most widely used tissues for in vitro culture and genetic transformation due to its high regeneration competency. However, this explant can only be maintained in 4℃ daily... The immature embryos (IEs) of wheat are the most widely used tissues for in vitro culture and genetic transformation due to its high regeneration competency. However, this explant can only be maintained in 4℃ daily cooler for a short period time for its use in plant tissue culture or transformation experiments. This study aimed to investigate the effects of environmental temperature, cryopreservation storage temperature, and heat shock culture (HSC) temperature on the regeneration frequency of wheat IEs. Results indicated that environmental temperature significantly affected the induction of embryonic calli. The optimum total accumulated temperature (TAT) during the time of anthesis and sampling for regeneration of these tissues was around 280℃ for spring wheat type cv. CB037 and approximately 300℃ for winter wheat type cv. Kenong 199. Regeneration ability obviously declined when the highest environmental temperature was over 35℃ for 1 d or a high temperature between 30 and 33℃ lasted for 5 d during anthesis and sampling. This finding was verified by culturing the freshly isolated IEs under different temperatures from 29 to 37℃ in different controlled growth incubators for 5 d; the IEs almost completely lost regeneration ability when the temperature rose to 37℃. Cryopreservation of-20℃ caused the wheat samples lost ability of producing callus or embryonic callus in a few days, and cryopreservation of-10℃ more than 10 d made the regeneration potential of the tissues dramatically declined. Comparatively, the temperature that best maintained high regeneration ability was -5℃, at which the materials can be maintained for around 1 mon. In addition, the preservation of the immature samples at -5 or -10℃ inhibited the direct germination of the IEs, avoiding the embryo axis removing process. Our results are useful for ensuring that field collection and cryopreservation of the wheat IEs are done correctly to enable tissue culture and genetic transformation. 展开更多
关键词 WHEAT immature embryos environmental temperature PRESERVATION plant regeneration
下载PDF
Cloning and Characterization of Genes Coding for Fructan Biosynthesis Enzymes (FBEs) in Triticeae Plants 被引量:8
3
作者 GAO Xiang SHE Mao-yun +4 位作者 yin gui-xiang YU Yang QIAO Wei-hua DU Li-pu YE Xing-guo 《Agricultural Sciences in China》 CAS CSCD 2010年第3期313-324,共12页
Fructan is not only a carbon source for storage but also plays an important role as anti-stress agents in many plant species. Complex fructans having both β-(2,1)- and β-(2,6)-linked fructosyl units accumulate i... Fructan is not only a carbon source for storage but also plays an important role as anti-stress agents in many plant species. Complex fructans having both β-(2,1)- and β-(2,6)-linked fructosyl units accumulate in Triticeae plants commonly. Three enzymes (sucrose: sucrose 1-fructosyltransferase, 1-SST, EC: 2.4.1.99; sucrose: fructan 6-fructosyltransferase, 6- SFT, EC: 2.4.1.10; and fructan: fructan 1-fructosyltransferase, 1-FFT, EC: 2.4.1.100) were involved in fructan biosynthesis in Triticeae plant species. We successfully isolated these genes from tetraploid wheat (Triticum turgidum, genotype: AABB), common wheat (Triticum aestivum L., genotype: AABBDD) and three wild relatives of common wheat, Triticum urartu Thum. (the origin of the AA genome), Aegilops speltoides (Tausch) Gren. (the putative source of the SS genome) and Aegilops tauschii Coss. (the source of the DD genome). Sequence analysis revealed that all the FBEs (fructan biosynthetic enzymes) had three highly conserved functional motifs except 1-SST (EU981912) from tetraploid wheat species only with conserved DPNG. Low pI (isoelectric point) and potential N-glycosylation sites were predicted, which were crucial for protein compartmentation and post-translational process. Analysis on subcelluar localization signals showed that only 6-SFT had vacuolar-directed signal. Sequences alignment result showed that 1-SST and 1-FFT were more conservative and had closer relationship each other, while 6-SFT was more active during the evolution processing. According to the syntenic relationship between wheat and rice genome, FBEs were predicated to be located on the homeologous group 6 and group 2 chromosomes. Expression profile confirmed that expression of all the three FBEs were drought-stress induced. This study can assist to establish a useful theoretical platform for cold- or drought-tolerant improvement of wheat by modulating FBEs expression. 展开更多
关键词 FRUCTANS fructan biosynthesis enzymes gene structure wheat evolution
下载PDF
Effects of inter-culture, arabinogalactan proteins, and hydrogen peroxide on the plant regeneration of wheat immature embryos 被引量:3
4
作者 ZHANG Wei WANG Xin-min +5 位作者 FAN Rong yin gui-xiang WANG Ke DU Li-pu XIAO Le-le YE Xing-guo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第1期11-19,共9页
The regeneration rate of wheat immature embryo varies among genotypes, howbeit many elite agriculture wheat varieties have low regeneration rates. Optimization of tissue culture conditions and attempts of adding signa... The regeneration rate of wheat immature embryo varies among genotypes, howbeit many elite agriculture wheat varieties have low regeneration rates. Optimization of tissue culture conditions and attempts of adding signal molecules are effective ways to increase plant regeneration rate. Inter-culture is one of ways that have not been investigated in plant tissue culture. Moreover, the use of arabinogalactan proteins (AGPs) and hydrogen peroxide (H202) have been reported to increase regeneration rate in a few plant species other than wheat. The current research pioneeringly uses inter-culture of immature embryos of different wheat genotypes, and also investigates impacts of AGP and H2O2 on the induction of embryogenic calli and plant regeneration. As a result, high-frequency regeneration wheat cultivars Kenong 199 (KN 199) and Xinchun 9 (XC9), together with low-frequency regeneration wheat line Chinese Spring (CS), presented striking increase in the induction of embryogenic calli and plant regeneration rate of CS through inter-culture strategy, up to 52.19 and 67.98%, respectively. Adding 50 to 200 mg L-1 AGP or 0.005 to 0.01‰ H2O2 to the callus induction medium, enhanced growth of embryogenic calli and plant regeneration rate in quite a few wheat genotypes. At 50 mg L-1 AGP application level in callus induction medium plant regeneration rates of 8.49,409.06 and 283.16% were achieved for Jimai 22 (JM22), Jingdong 18 (JD18) and Yangmai 18 (YM18), respectively; whereas at 100 mg L-1 AGP level, CS (105.44%), Chuannong 16 (CN16) (80.60%) and Ningchun 4 (NC4) (62.87%) acted the best. Moreover CS (79.05%), JM22 (7.55%), CN16 (101.87%), YM18 (365.56%), Yangmai 20 (YM20) (10.48%), and CB301 (187.40%) were more responsive to 0.005 %o of H2O2, and NC4 (35.37%) obtained the highest shoot regeneration rates at 0.01%o of H2O2. Overall, these two methods, inter-culture and AGP (or H2O2) application, can be further applied to wheat transgenic research. 展开更多
关键词 WHEAT immature embryos plant regeneration inter-culture arabinogalactan proteins hydrogen peroxide
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部